
 
FP7-ICT-2011.4.2 
Contract no.: 288342 

www.xlike.org 
 

 

 

 

 
Deliverable D2.1.1 

 

Shallow linguistic processing prototype 

 

 

Editor: Marko Tadić, UZG 

Author(s): Marko Tadić, UZG; Željko Agić, UZG; Božo Bekavac, UZG; Xavier Carreras, UPC; 
Lluís Padró, UPC; Tadej Štajner, JSI; Esteban García-Cuesta, iSOCO; Juanzi Li, 
THU; Zhixing Li, THU; Alex Zhang, THU 

Deliverable Nature: Prototype 

Dissemination Level: 
(Confidentiality)1 

Public (PU) 

Contractual Delivery Date: M6 

Actual Delivery Date: M6.5 

Suggested Readers: All partners using XLike Toolkit. 

Version: 1.0 

Keywords: shallow linguistic processing, pipeline, tokenisation, lemmatisation, stemming, 
POS-tagging, MSD-tagging, NERC, named entities 

 

 

                                                           
1
 Please indicate the dissemination level using one of the following codes: 

• PU = Public • PP = Restricted to other programme participants (including the Commission Services) • RE = Restricted to a group 
specified by the consortium (including the Commission Services) • CO = Confidential, only for members of the consortium (including 
the Commission Services) • Restreint UE = Classified with the classification level "Restreint UE" according to Commission Decision 
2001/844 and amendments • Confidentiel UE = Classified with the mention of the classification level "Confidentiel UE" according to 
Commission Decision 2001/844 and amendments • Secret UE = Classified with the mention of the classification level "Secret UE" 
according to Commission Decision 2001/844 and amendments 
 



XLike Deliverable D2.1.1 Shallow linguistic processing prototype 

Page 2 of (29)  © XLike consortium 2012 – 2014 

 

Disclaimer 

This document contains material, which is the copyright of certain XLike consortium parties, and may not 
be reproduced or copied without permission.  

All XLike consortium parties have agreed to full publication of this document.  

The commercial use of any information contained in this document may require a license from the 
proprietor of that information. 

Neither the XLike consortium as a whole, nor a certain party of the XLike consortium warrant that the 
information contained in this document is capable of use, or that use of the information is free from risk, 
and accept no liability for loss or damage suffered by any person using this information. 

 

 

 

Full Project Title: Cross-lingual Knowledge Extraction 

Short Project Title: XLike 

Number and  
Title of Work package: 

WP2 – Multilingual linguistic processing 
 

Document Title: D2.1.1 – Shallow linguistic processing prototype 

Editor (Name, Affiliation) Marko Tadić, UZG 

Work package Leader 
(Name, affiliation) 

Marko Tadić, UZG 

Estimation of PM spent 
on the deliverable: 

 

 

 

Copyright notice 

 2012-2014 Participants in project XLike 

 



Deliverable D2.1.1 Shallow linguistic processing prototype XLike 

© XLike consortium 2012 - 2014 Page 3 of (29)  

 

Executive Summary  

This document presents the Shallow linguistic processing prototype developed during the first six months 
of the XLike project. 
 
The document is describing the prototype that is aiming at providing the rest of the project teams with the 
shallow linguistic processing capabilities for each XLike language. The prototype offers two types of 
services: 1) Language identification (covering XLike languages); 2) Language analysis at shallow level 
(sentence splitting and tokenisation, POS/MSD-tagging and lemmatisation, named entity recognition and 
classification). All these subtasks are connected into a language specific pipeline. The output from this 
pipeline will provide the input for the following tasks in the project. 
 
This prototype is bringing the most straightforward solution for a number of subtasks by using existing 
language tools and resources that could be combined in a pipeline hiding the complexity of internal 
operations to the end users. The more elaborate version of shallow linguistics processing pipeline will be 
developed by adapting this prototype, in order to accommodate also the needs of T2.2. At this moment the 
pipeline is oriented towards formal language register, while the informal language will be covered in 
further stages of WP2, i.e. tasks T2.3 and T2.4. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XLike Deliverable D2.1.1 Shallow linguistic processing prototype 

Page 4 of (29)  © XLike consortium 2012 – 2014 

 

Table of Contents 

Executive Summary ........................................................................................................................................... 3 
Table of Contents .............................................................................................................................................. 4 
List of Figures ..................................................................................................................................................... 5 
List of Abbreviations .......................................................................................................................................... 6 
1 Introduction ............................................................................................................................................... 7 
2 General shallow linguistic processing prototype structure ....................................................................... 8 

2.1 Language identification ....................................................................................................................... 9 
2.2 Language analysis.............................................................................................................................. 10 
2.3 Common output conversion module ................................................................................................ 10 

3 Input, intermediary and output format specification .............................................................................. 11 
3.1 Input format: free text ...................................................................................................................... 11 
3.2 Intermediary format: CoNLL ............................................................................................................. 11 

3.2.1 General rules of the CoNLL format ............................................................................................ 11 
3.2.2 The CoNLL format for XLike ....................................................................................................... 12 

3.3 Output format: XLike XML ................................................................................................................ 13 
4 Technical implementation ........................................................................................................................ 15 

4.1 English, Spanish, Catalan ................................................................................................................... 15 
4.2 German ............................................................................................................................................. 16 
4.3 Slovenian ........................................................................................................................................... 18 
4.4 Chinese .............................................................................................................................................. 18 

5 Conclusions .............................................................................................................................................. 20 
References ....................................................................................................................................................... 21 
Appendix A: XLike XML schema ....................................................................................................................... 22 
Appendix B: Examples of sentences in CoNLL format ..................................................................................... 24 

An English sentence ..................................................................................................................................... 24 
A German sentence ..................................................................................................................................... 24 
A Spanish sentence ...................................................................................................................................... 24 
A Catalan sentence ...................................................................................................................................... 24 
A Chinese sentence ...................................................................................................................................... 25 

Appendix C: XLike web service definition ........................................................................................................ 26 
Overall web services definition .................................................................................................................... 26 
An example of FreeLing-based web service................................................................................................. 29 

 

 

 



Deliverable D2.1.1 Shallow linguistic processing prototype XLike 

© XLike consortium 2012 - 2014 Page 5 of (29)  

 

List of Figures  

Figure 1: An example of a sentence with several linguistic structures in graph form ...................................... 8 
Figure 2: Schematic representation of XLike shallow linguistic processing prototype ..................................... 9 
Figure 3: An example of a sentence from the Figure 1 with several linguistic structures in CoNLL format ... 12 
Figure 4: An example of a sentence from the Figure 1 with several linguistic structures in XML format ...... 14 
 



XLike Deliverable D2.1.1 Shallow linguistic processing prototype 

Page 6 of (29)  © XLike consortium 2012 – 2014 

 

List of Abbreviations 

BIO format of annotation for named entities 
CoNLL Conference on Natural Language Learning 
HGC Huge German Corpus 
HMM Hidden Markov Model 
ISO International Standard Organisation 
POS Part of Speech 
MSD Morphosyntactic Description 
NERC Named Entity Recognition and Classification 
NE Named Entity 
NLP Natural Language Processing 
REST web services protocol 
STTS Stuttgart-Tübingen Tagset for POS-tagging German corpora 
 
 



Deliverable D2.1.1 Shallow linguistic processing prototype XLike 

© XLike consortium 2012 - 2014 Page 7 of (29)  

 

1 Introduction 

Each system aiming at cross-lingual extraction of knowledge data relies on language processing capabilities 
that represent the first step in the processing pipeline. In order to be most effective this language 
processing part has to be composed of smaller modules, each covering the individual subtask such as 
language detection, sentence splitting, tokenisation, lemmatisation, POS/MSD-tagging, named entity 
recognition and classification. This deliverable represents a report on producing the shallow linguistic 
processing pipeline and the pipelines for each language themselves. 

The goal of this deliverable is to provide other research teams in XLike project with the uniform services for 
language processing of XLike languages. This represents the initial stage of the planned XLike Toolkit. Also, 
the goal was to avoid the reinvention of solutions for tasks that are already solved elsewhere – for some 
languages (e.g. English, German, and Spanish) even more times with different systems – but to examine 
and find the most appropriate existing tools for individual tasks. We were looking into tools, primarily 
published under different types of open source licences that would be easily connectable into a single-
language pipeline. However, each single-language pipeline needs to adhere to the predefined common 
specification that would assure the uniform output for all of them. Therefore, the input, intermediary and 
output formats were adapted to the needs of the XLike Toolkit processing at further stages. 

When in this deliverable we use the term “XLike languages” we will refer to English, German, Spanish, 
Chinese, Catalan and Slovenian. 



XLike Deliverable D2.1.1 Shallow linguistic processing prototype 

Page 8 of (29)  © XLike consortium 2012 – 2014 

 

2 General shallow linguistic processing prototype structure 

The shallow processing prototype can be seen as a part of the full linguistic processing pipeline consisting 
of: 

1. Shallow linguistic processing 

2. Deep linguistic processing 

3. Extraction of information in the form of relations. 

We note that each of these operations encompasses a series of linguistic processing modules which are 
sometimes complex, and each of them requires some language-dependent configuration. For the sake of 
simplicity, at the moment each individual XLike language service offers a single operation called 
analyze_id that performs the full pipeline all-together. Section 4 below describes this operation in more 
detail. 

A linguistic processing pipeline outputs linguistic structures that encode syntactic and semantic information 
for the input text. Figure 1 plots a sentence with linguistic annotations, and illustrates that the annotations 
can be quite complex. 

 

 

Figure 1: An example of a sentence with several linguistic structures in graph form 

 

The general shallow processing prototype consists of the pipeline of different language processing modules 
each covering a specific subtask. The shallow linguistic processing prototype is offering two types of 
services: 

1. Language identification 

2. Language analysis. 

The general shallow processing prototype can be represented schematically with: 



Deliverable D2.1.1 Shallow linguistic processing prototype XLike 

© XLike consortium 2012 - 2014 Page 9 of (29)  

 

 

 

Figure 2: Schematic representation of XLike shallow linguistic processing prototype 

 

2.1 Language identification 

Since there is no assurance that the news streams, which are expected as the input source of texts to 
process, are accompanied by language identification meta-data, or the language identification could be 
derived from their URLs, the language identification module is needed at the very beginning of the shallow 
linguistic processing pipeline. 

The language identification module takes as the input parameter the free text in utf8 encoding and 
outputs the language code following the ISO 639-2 specification: 

 en: English 

 es: Spanish 

 ca: Catalan 

 de: German 

 zh: Chinese 

 sl: Slovenian. 

The language identification module is based on the well-known method that uses the character n-gram 
probability language model2. For XLike this model was trained on the dumps of Wikipedia data in XLike 
languages and a number of additional main world languages (e.g. Russian, Italian, etc.). In addition to that 
training, to avoid the possible language identification errors caused by genetical and typological closeness 

                                                           
2
 Padró & Padró (2004). 

en 

es 

ca 

de 

zh 

sl 

language x 



XLike Deliverable D2.1.1 Shallow linguistic processing prototype 

Page 10 of (29)  © XLike consortium 2012 – 2014 

 

of languages or by similarities in their orthographic systems, language identification module was also 
trained on data from the set of additional languages: 

 Galician, Portuguese and French vs. Spanish and Catalan; 

 Croatian, Czech, Serbian (roman script), Slovak vs. Slovenian. 

In this way we expect more precise language identification results. The evaluation of language 
identification precision and recall will be conducted in the next stage in WP2. This might result in additional 
training or other ways of refinement of language identification module. 

If language identification module can’t recognise the language, it returns the special value ‘unk’ (for 
unknown). 

 

2.2 Language analysis 

Language analysis part of the general shallow processing pipeline consists of six individual forks (or sub-
pipelines) for each XLike language. Each of these pipelines is composed of several modules that cover tasks 
of: 

 sentence splitting 

 tokenisation 

 lemmatisation 

 POS- or MSD-tagging 

 named entity recognition and classification 
What is covered by the proposed specification of tasks in above list are the functionalities needed. 
Different XLike language pipelines don’t need to have the exactly same number of modules. In some cases, 
one module can cover two (or more) tasks and we treat it as a black box as long as it provides the desired 
results following the predefined input and output formats. In this way we can take advantage of already 
existing and tested chains of modules that can function as parts of our shallow linguistic processing 
pipeline. This allowed us to avoid the need to build the whole pipeline and connect each module from the 
scratch for all languages. The details of technical implementation are in the Section 4. 
 

2.3 Common output conversion module 

All six pipelines for individual languages converge together at the end where a common converter between 
the intermediary format and output format is used. 
This converter is used to convert the predefined intermediary CoNLL format into XLike output XML format 
defined and validated by XLike XML-schema. 
 



Deliverable D2.1.1 Shallow linguistic processing prototype XLike 

© XLike consortium 2012 - 2014 Page 11 of (29)  

 

3 Input, intermediary and output format specification 

The shallow linguistic processing pipeline can function only if its input, intermediary and output formats of 
data are precisely defined. 
 

3.1 Input format: free text 

Since we expect that the news-streams will be encoded and formatted in a number of different ways that 
will not be easy to bring at the uniform level, our choice for input format was the free text encoded as utf8 
character stream. This format is acceptable at this stage of processing, i.e. shallow linguistic processing 
prototype. 
However, if needed, we can adapt the first module in the general pipeline, i.e. language identification 
module, to accept a different input format, e.g. XML, HTML or similar. This remains to be checked after the 
verification and evaluation of the shallow linguistic processing prototype at the further stages of 
processing. 
 

3.2 Intermediary format: CoNLL 

During the choice of the intermediary format we had to take care about all relevant information, not just at 
the shallow, but also at the deep linguistic processing level. In the NLP community the CoNLL format is a 
popular markdown format to represent linguistic structure. Its origins are in the Shared Tasks of the CoNLL 
conference (starting from 1997), which have provided benchmarks datasets and evaluation methods for a 
number of tasks, including Named Entity Recognition and Classification, Dependency Parsing and Semantic 
Role Labelling. In XLike, we will use this format to represent linguistic structure produced by modules in 
WP2. The main advantages of this format are: 

 It is text-based. 

 It represents linguistic structure in layers, and as a consequence appropriate for pipeline 
architectures like the one in XLike. 

 It is relatively easy to inspect the linguistic structure of a sentence. 

 It has no tags, thus reducing the size of annotated datasets. 

 Texts with linguistic annotations can be directly saved in plain text files, or be embedded into an 
XML text element. 

Next we describe the general CoNLL format, and then specify the actual format for XLike. 
 

3.2.1 General rules of the CoNLL format 

The general rules of the CoNLL format are: 

 A sentence of n tokens is represented by an n  m matrix of string values. The i-th row contains the 
annotations for the i-th token. Each of the m columns corresponds to a layer of linguistic structure. 
The matrix is sometimes referred to as a block of columns. 

 Columns are separated by spaces or tabs. The string values, or fields, should contain at least one 
non-space character, and should contain no spaces. There is no way to escape characters; so, for 
example, it is not valid to write a string field containing a space in quotes. 

 All rows should have the same number of fields. 

 Sentences (i.e. blocks of columns) are separated by one blank line. 

 In some columns, a “_” character (without the quotes) stands for a null value. Exceptions are the 
columns representing word forms or lemmas, where that character is interpreted as the “_” string 
value. 

 
 



XLike Deliverable D2.1.1 Shallow linguistic processing prototype 

Page 12 of (29)  © XLike consortium 2012 – 2014 

 

3.2.2 The CoNLL format for XLike 

The CoNLL format we will use for XLike closely follows that from the CoNLL-2009 Shared Task3. See 
Appendix A for an example of a sentence annotated in CoNLL format. At the moment, we will consider the 
following columns. Consider a sentence with n tokens: 

1. id: Token position in the sentence, i.e. a number from 1 to n. 
2. token: literal form of the token appearing in the text. 
3. lemma: lemma. 
4. pos: Part-of-speech tag. 

5. msd: Morpho-syntactic description (In some languages a list of tags separated by the “|” character. 
In other languages it can be the full MSD-tag. An empty list is represented by “_”). 

6. ne: Named-entity tag in BIO form. Tokens which are not part of a named entity receive the O tag. 
For a named entity of type k spanning from tokens i to j, token i receives the B-k tag, while tokens i 
+ 1 to j receive the I-k tag. 

7. head: Dependency head. In a dependency tree, each token has a single head. This column contains 

the index of such head. Hence, if column i has index h it means that there is a syntactic dependency 
from token h to token i. A special value of 0 indicates the root of the sentence. 

8. dlabel: Dependency label. The syntactic function of token i with its head. In unlabelled 
dependency trees, we use values “_”. 

9. pred: Predicate. If the token is a semantic predicate, the lemma of such predicate. If the token is 
not a predicate, a “_” value is inserted. The lemma of the predicate sometimes includes the 
predicate sense, i.e. a number indicating the semantic sense of the predicate according to some 
predicate catalogue. 

10. (or more) p-role: Arguments of the p-th predicate. Rather than a single column, this is a 

sequence of columns (possibly empty), with one column for each predicate of the sentence. That is, 
if the pred column contains P non-null values, then the column 10 + p – 1 encodes the arguments of 
the p-th predicate. If token i is not a direct argument of p then it contains a null value “_”; if it is a 
direct argument, then it contains the semantic role between the p-th predicate and the syntactic 
subtree headed by token i. 

 

ID WORD---> LEMMA--> POS MSD NE--> DEP--> SRL----------------------> 

  
1 Unesco unesco NNP _ B-ORG 2 SBJ _ A0 A0 _ 

2 is be VBZ _ O 0 ROOT _ _ _ _ 

3 now now RB _ O 2 TMP _ AM-TMP _ _ 

4 holding hold VBG _ O 2 VC hold.04 _ _ _ 

5 its its PRP _ O 7 NMOD _ _ _ _ 

6 biennial biennial JJ _ O 7 NMOD _ _ _ _ 

7 meetings meeting NNS _ O 4 OBJ _ A1 _ _ 

8 in in IN _ O 7 LOC _ AM-LOC _ _ 

9 New new NNP _ B-LOC 9 NAME _ _ _ _ 

10 York york NNP _ I-LOC 8 PMOD _ _ _ _ 

11 to to TO _ O 4 PRP _ _ _ _ 

12 devise devise VB _ O 11 IM devise.01 _ _ _ 

13 its its PRP _ O 15 NMOD _ _ _ A0 

14 next next JJ _ O 15 NMOD _ _ _ AM-TMP 

15 projects project NNS _ O 12 OBJ project.02 _ A1 _ 

16 . . . _ O 2 P _ _ _ _ 

Figure 3: An example of a sentence from the Figure 1 with several linguistic structures in CoNLL format  

 

                                                           
3
 http://ufal.mff.cuni.cz/conll2009-st/task-description.html 



Deliverable D2.1.1 Shallow linguistic processing prototype XLike 

© XLike consortium 2012 - 2014 Page 13 of (29)  

 

3.3 Output format: XLike XML 

The XML format is designed to represent the output of linguistic analysis that will be used at the end of the 
XLike shallow linguistic processing pipeline. Here we provide a brief description of the XML elements while 
the detailed description is defined by XLike XML schema in the Appendix. The output of an analysis is 
represented sentence by sentence. Each sentence is contained in an XML element sentence. This 
element contains three types of basic elements, namely words, entities and relations: 

 word: Represents an occurrence of a word in a sentence. The attributes are: 
o token: the token as it occurs in the input text 
o lemma: the lemma of the word (disambiguated) 
o pos: the POS/MSD tag (disambiguated) 

o id: the position of the token in the sentence (starting at 1), which serves as an identifier 
for this token 

o start: the start character of the token in the input text 
o end: the ending character of the token in the input text 

Further attributes that may be included are: 
o A confidence value of the syntactic disambiguation for this word 
o Additional morpho-syntactic information, such as language dependent traits of the token 

(gender, number, case, WordNet sense, list of confidence-weighted alternative 
analyses,...). 

 entity: (preliminary) The occurrence of a named entity in text. Entities correspond to contiguous 
tokens, and may have a type. The attributes are: 

o form: the entity mention as it occurs in the input text 
o lemma: a canonical value for this entity 
o type: the type of named entity (location, organization, person, time,...) 

o id: a unique identifier of the entity in the sentence 
o start: the id of the initial word forming the entity 

o end: the id of the final word forming the entity 

 relation: (preliminary) The occurrence of a relation in a sentence. For now we assume relations 
in triple form, where the relation has a name and the two arguments are entities of the sentence. 
The attributes are: 

o predicate: the name of the relation (lemma of the predicate evoking the relation) 

o arg1: the id of the entity that is first argument 

o arg2: the id of the entity that is second argument. 
 



XLike Deliverable D2.1.1 Shallow linguistic processing prototype 

Page 14 of (29)  © XLike consortium 2012 – 2014 

 

<item> 

 <sentences> 

  <sentence id="1"> 

   <text>Unesco is now holding its biennial meetings in New York.</text> 

    <tokens> 

      <token pos="NP00SP0" end="6" lemma="unesco" id="1.1" start="0">Unesco</token> 

      <token pos="VBZ" end="9" lemma="be" id="1.2" start="7">is</token> 

      <token pos="RB" end="13" lemma="now" id="1.3" start="10">now</token> 

      <token pos="VBG" end="21" lemma="hold" id="1.4" start="14">holding</token> 

      <token pos="PRP$" end="25" lemma="its" id="1.5" start="22">its</token> 

      <token pos="JJ" end="34" lemma="biennial" id="1.6" start="26">biennial</token> 

      <token pos="NNS" end="43" lemma="meeting" id="1.7" start="35">meetings</token> 

      <token pos="IN" end="46" lemma="in" id="1.8" start="44">in</token> 

      <token pos="NP00G00" end="55" lemma="new_york" id="1.9" start="47">New_York</token> 

      <token pos="Fp" end="56" lemma="." id="1.10" start="55">.</token> 

    </tokens> 

   </sentence> 

 </sentences> 

 <entities> 

   <entity type="location" displayName="new_york" id="2"> 

    <mentions> 

      <mention SentenceId="1" id="1.9" words="New York"/> 

    </mentions> 

   </entity> 

   <entity type="person" displayName="organization" id="1"> 

    <mentions> 

      <mention SentenceId="1" id="1.1" words="Unesco"/> 

    </mentions> 

   </entity> 

  </entities> 

  <relations> 

    <relation subject="1.1" name="hold" object="1.9" id="3"/> 

  </relations> 

</item> 

Figure 4: An example of a sentence from the Figure 1 with several linguistic structures in XML format 

 
The exact XLike XML format schema listing is available in the Appendix. 



Deliverable D2.1.1 Shallow linguistic processing prototype XLike 

© XLike consortium 2012 - 2014 Page 15 of (29)  

 

4 Technical implementation 

The shallow linguistic processing pipeline is technically realised as a series of web services that use REST 
protocol and each of them is covering one or several language processing tasks (see section 2.2 for details). 

The one-stop entry point to individual language pipelines in this prototype stage is set to URL 
http://www.xlike.org/sandbox/ where each pipeline can be tested through the respective URL. 

Minimal unit that will be processed by each service is defined at the level of each service. However, to 
avoid too many calls, that can slow down the processing time significantly, at this moment the minimal unit 
is the whole news article. Additional reasons for a unit of that size are that some modules require the 
whole text to be present in order to process it properly (e.g. anaphora resolution, NERC using the one-
meaning-per-text strategy, etc.). 

At this prototype stage no evaluation has been provided either for individual modules/services and/or for 
complete pipelines. The reasons for that are: 

 there is a deliverable dedicated to that topic (D7.3.1) targeted for M12 when more processing 
material will be collected for testing. 

 the relevant golden standards for individual modules and languages are not available at this stage. 
Also, whether the intrinsic evaluation of each module/service will be provided or only the extrinsic 
evaluation of the whole pipelines will be produced, remains to be decided during the work on 
aforementioned deliverable. 

For XLike languages we selected the most prominent tools that represent the state of the art. Our main 
orientation was to use open source code as much as possible and to go for a proprietary solutions only if 
there was no other option. This principle was preserved practically in all pipelines. 

In the following subsections we will describe the shallow linguistic processing pipelines for each language. 

 

4.1 English, Spanish, Catalan 

This section describes language-dependent linguistic services for English, Spanish and Catalan based on 
FreeLing4. For these three languages the same system is used, therefore a joint description. For each 
language, a service named analysis_id is offered. The service performs linguistic analysis for texts in 
the language id of the service. The input to the operation consists of the text to be analysed, plus a 
number of options that configure the behaviour of analysers themselves. The output consists of a structure 
encoding several layers of linguistic analysis for the input text as described in the Section 3. 

The functional specification is: 

 Input: 

o text: The input text to analyse, in UTF-8. 

o analysisOptions: A struct of options to control the operation. All these options have a 
default value, and they do not need to be specified. Except where noted, all options are 
boolean-valued. 

 input: A string-valued field indicating the format of the text input parameter. 

It is one value of the following: 

 plain: a plain string containing free text (default). 

 tokenized: a text split into sentences and tokenized, represented in CoNLL 
format. 

                                                           
4
 http://nlp.lsi.upc.edu/freeling 

http://www.xlike.org/sandbox/


XLike Deliverable D2.1.1 Shallow linguistic processing prototype 

Page 16 of (29)  © XLike consortium 2012 – 2014 

 

 tagged: a text in CoNLL format already split, tokenized and tagged. 

 parsed: a text in CoNLL format already split, tokenized, tagged and parsed. 

 conll: Whether to return the analysis in CoNLL format (default). 

 taggingOptions A struct of options controlling the behaviour of the tagger: 

 punctuation: Assignment of special part-of-speech tags to punctuation 
tokens. 

 numbers: Recognition of numerical expressions (e.g. “five hundred and 
eighteen”) and assignment of lemmas encoding their numerical value. 

 dates: Detection of dates (e.g. “the fourth of January”) 

 multiwords: Detection of multiword expressions (e.g. “as long as”) 

 quantities: Detection of ratios, percentages, and physical or currency 
magnitudes (e.g. twenty per cent, 20%, one out of five, 1/5, one hundred 
miles per hour). This options requires activating the numbers option. 

 ner: Recognition (i.e. segmentation) of named entities. 

 nec: Classification of named entities. Requires activating the ner option. 

 parsingOptions: A struct of options controlling the behaviour of the parser. 

 srl: Whether to perform semantic role labelling. 

 (more options to be specified) 

 extractionOptions: A struct of options controlling the behaviour of the extraction 
method. 

 (options need to be specified) 

 Output: 

o the linguistic analysis in CoNLL format (default). See Section 3 for a specification of this 
format. 

 

4.2 German 

The pipeline for processing German is combining several existing modules that deal with individual tasks, 
wrapped in a web services. The external modules used are: 
 
Apache OpenNLP library (http://opennlp.apache.org/) is a machine learning based toolkit for the processing 
of natural language text. It supports the most common NLP tasks, such as tokenization, sentence 
segmentation, part-of-speech tagging, named entity extraction, chunking, parsing, and coreference 
resolution. This library is used by the service for tokenizing and sentence detection. The pre-trained models 
used by this library are available at http://opennlp.sourceforge.net/models-1.5/ 
 
Stanford POS Tagger (http://nlp.stanford.edu/software/tagger.shtml) is used by the service for determining 
part of speech token attributes.  
There are three models for German language available: 

 german-hgc.tagger model is trained on the first 80% of the Negra corpus, which uses the STTS 
tagset. The Stuttgart-Tübingen Tagset (STTS) is a set of 54 tags for annotating German text corpora 
with part-of-speech labels, which was jointly developed by the Institut für maschinelle 
Sprachverarbeitung of the University of Stuttgart and the Seminar für prachwissenschaft of the 

http://opennlp.apache.org/
http://opennlp.sourceforge.net/models-1.5/
http://nlp.stanford.edu/software/tagger.shtml


Deliverable D2.1.1 Shallow linguistic processing prototype XLike 

© XLike consortium 2012 - 2014 Page 17 of (29)  

 

University of Tübingen.  This model uses features from the distributional similarity clusters built 
over the HGC. 

 german-dewac.tagger model uses features from the distributional similarity clusters built from the 
deWac web corpus . 

 german-fast.tagger model lacks distributional similarity features, but is several times faster than 
the other alternatives. 

 
TreeTagger (http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html) and 
the Java wrapper (http://code.google.com/p/tt4j/) are used for determining the lemmas. The information 
about the models (in German) can be found at the TreeTagger web page. 
 
Stanford Named Entity Recognizer (http://nlp.stanford.edu/software/CRF-NER.shtml) is used by the service 
for determining named entities. There are two classifiers for German NER available:  

  Huge German Corpus-generalized classifier: This classifier has been trained on the CoNLL 2003 
German data and has been generalized with the distributional similarity lexicon formed using the 
175 million tokens of the HGC which have been clustered in 600 clusters. HGC is a collection of 
news-wire text. 

 deWaC-generalized classifier : This classifier has been trained on the CoNLL 2003 German data and 
has been generalized with the distributional similarity lexicon formed using the 175 million tokens 
of the deWaC which have been clustered in 400 clusters. deWaC corpus has been created by 
collecting the content from the web, hence it is unclean and contains data from all genres. 

 
The models and classifiers used by the web service can be configured using the application properties file. 
The service is currently configured using the following models/classifiers: german-hgc.tagger model for 
part-of-speech tagging, Huge German Corpus-generalized classifier used for named entity recognition, 
Apache OpenNLP German sentence and token model used for tokenization and German model used in Tree 
tagger for determining the lemma. 

The functional specification for German pipeline is: 

 Input: 

o Target: one of the following values, specifying the desired output elements 

 tokens: plain tokens 

 lemmas: tokens with lemma, pos and msd attributes 

 entities: tokens with lemma, pos, msd and ne attributes 

o InputType: one of the following values specifies the type of input. For the token target this 

parameter is optional. 

 text: the text parameter is free text 

 conll: the text parameter is CoNLL file contents 

o Text:  depending on the input type the free text to analyze or the CoNLL file content in 

String form 

 Output: 

o the linguistic analysis in CoNLL format (default). See Section 3 for a specification of this 
format. 

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html
http://code.google.com/p/tt4j/
http://nlp.stanford.edu/software/CRF-NER.shtml


XLike Deliverable D2.1.1 Shallow linguistic processing prototype 

Page 18 of (29)  © XLike consortium 2012 – 2014 

 

 

4.3 Slovenian 

This section describes the service for Slovene language processing, composed of a tokenizer, lemmatizer, 
morphosyntactic tagger and a named entity extractor.  

The tokenizer, lemmatizer, and the MSD tagger belong to the “Obeliks” system, written in C#. The 
lemmatizer [Juršič et al., 2007] is based on supervised learning of ripple-down rules. The MSD tagger, a 
supervised approach using maximum entropy for sequence classification [Rupnik et al., 2008] works in 
concert with the lemmatizer, producing morphosyntactic tags in the format, specified in [Erjavec and Krek, 
2008].  

The named entity extractor detects entities of classes ‘person’, ‘location’ and ‘other’, where ‘other’ consists 
of the remaining common classes, such as ‘event’, ‘product’, ‘organization’, ‘title’ and similar, but not 
including ‘time’, ‘quantity’ or ‘money’. The method is based on conditional random fields, implemented in 
the Mallet system [McCallum, 2002]. The features used in the component are the following: 
morphosyntactic features, memberships of lemmas in Wikipedia lexicons, and offset-based conjuctions of 
features. The model is trained on a corpus of 2173 annotated sentence [Krek and Erjavec, 2012] The 
aggregate performance of the system is measured as F1 score of 0.765, with slightly better performance on 
‘person’ and ‘location’, but slightly lower on ‘other’, as it is a very wide and ill-defined class.  

The functional specification is: 

 Input: 

o Target: one of the following values, specifying the desired output elements 

 tokens: plain tokens 

 lemmas: tokens with lemma, and msd attributes 

 entities: tokens with lemma, msd and ne attributes 

o Text: the free text to analyze 

 Output: 

o the linguistic analysis in CoNLL format (default). See Section 3 for a specification of this 

format. 

 

4.4 Chinese 

This section describes the service for Chinese language processing, composed of a tokenizer, PoS tagger 
and a named entity extractor.  

The tokenizer and PoS tagger is written in C/C++ and then packed as a lib for the invoking in Java. It’s based 
on a dual-level HMM model. The tokenizer can process 500K Chinese text per second at a high accuracy of 
98.45%. The size of dictionary files is less than 3 Mb after compressed. The tag set used in the PoS tagger 
contains 95 tags. These 95 tags are in two levels. The top level contains 22 tags at the top level and 73 tags 
at the second level.  

The named entity extractor detects entities of classes ‘person’, ‘location’, and ‘organization’. We are 
capable to detect other entities classes such as ‘time’, ‘money’ and ‘number’ in future work. 



Deliverable D2.1.1 Shallow linguistic processing prototype XLike 

© XLike consortium 2012 - 2014 Page 19 of (29)  

 

External modules used by the service: ICTCALS library (http://www.ictclas.org/index.html) is a toolkit for 
the processing of Chinese language such as tokenization, PoS tagging and so on.  This library is used by the 
service for tokenization and PoS tagging. 

The functional specification is: 

 Input: 

o text: The input text to analyse, in UTF-8. 

o analysisOptions: A struct of options to control the operation. All these options have a 
default value, and they do not need to be specified. Except where noted, all options are 
boolean-valued. 

 input: A string-valued field indicating the format of the text input parameter. 

It is one value of the following: 

 plain: a plain string containing free text (default). 

 tokenized: a text split into sentences and tokenized, represented in CoNLL 
format. 

 tagged: a text in CoNLL format already split, tokenized and tagged. 

 parsed: a text in CoNLL format already split, tokenized, tagged and parsed. 

 conll: Whether to return the analysis in CoNLL format (default). 

 ner: Recognition and classification of named entities. 

 parsingOptions: A struct of options controlling the behaviour of the parser. 

 (options need to be specified) 

 extractionOptions: A struct of options controlling the behaviour of the extraction 
method. 

 (options need to be specified) 

 Output: 

o the linguistic analysis in CoNLL format (default). See Section 3 for a specification of this 
format. 

 



XLike Deliverable D2.1.1 Shallow linguistic processing prototype 

Page 20 of (29)  © XLike consortium 2012 – 2014 

 

5 Conclusions 

This document presents the Deliverable 2.1.1 Shallow linguistic processing prototype. Its structure, 
functional specification and some details of technical specification are presented. Also, the definition of 
input, intermediary and output formats are given. 
 

 



Deliverable D2.1.1 Shallow linguistic processing prototype XLike 

© XLike consortium 2012 - 2014 Page 21 of (29)  

 

References 

Erjavec, T., Krek, S. (2008) Oblikoskladenjske specifikacije in označeni korpusi JOS. Zbornik Šeste 
konference Jezikovne tehnologije, Ljubljana, 49-53. 

FreeLing User Manual (v3.0), 2012-05 [http://nlp.lsi.upc.edu/freeling/doc/userman/userman.pdf, accessed 
2012-06-28] 

Juršič, M., Mozetič, I., Lavrač, N. (2007) Learning Ripple Down Rules for Efficient Lemmatization. 
Proceedings of the 10th International Multiconference Information Society, IS 2007, Ljubljana, 206–209. 

Krek, S., and Erjavec, T. Korpus 400.000 besed. [http://www.slovenscina.eu/Vsebine/Sl/Kazalniki/K10.aspx, 
accessed 2012-05]. 

McCallum, A., (2004) Mallet: A machine learning for language toolkit [http://mallet.cs.umass.edu/, 
accessed 2012-05]. 

Padró, M., Padró, L. (2004) Comparing Methods for Language Identification. Procesamiento del Lenguaje 
Natural, n. 33, pg. 155--162. September, 2004. 

Padró, L., Stanilovsky, E. (2012) FreeLing 3.0: Towards Wider Multilinguality. Proceedings of the Language 
Resources and Evaluation Conference (LREC 2012), ELRA, Istanbul, Turkey, May, 2012. 

Rupnik, J., Grčar, M., and Erjavec, T. (2008) Improving morphosyntactic tagging of Slovene language 
through meta-tagging. Informatica Special Issue: Intelligent Systems, Costin Badica (eds.), 437-444. 

 



XLike Deliverable D2.1.1 Shallow linguistic processing prototype 

Page 22 of (29)  © XLike consortium 2012 – 2014 

 

Appendix A: XLike XML schema 

 

<?xml version="1.0" encoding="utf-8"?> 

 

<xs:schema elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema" > 

   

  <xs:element name="item" type="item" /> 

 

  <!-- item contains information about a news item -->   

  <xs:complexType name="item"> 

    <xs:sequence> 

      <xs:element name="sentences" type="sentenceList" minOccurs="0" maxOccurs="1" /> 

      <xs:element name="entities" type="entityList" minOccurs="0" maxOccurs="1" /> 

      <xs:element name="conll" minOccurs="0" maxOccurs="1" type="xs:string" /> 

    </xs:sequence> 

  </xs:complexType> 

   

  <!-- List of sentences in the item --> 

  <xs:complexType name="sentenceList"> 

    <xs:sequence> 

      <xs:element name="sentence" minOccurs="0" maxOccurs="unbounded" type="sentence" /> 

    </xs:sequence> 

  </xs:complexType> 

 

  <!-- List of entities in the item --> 

  <xs:complexType name="entityList"> 

    <xs:sequence> 

      <xs:element name="entity" type="entity" minOccurs="0" maxOccurs="unbounded" /> 

    </xs:sequence> 

  </xs:complexType> 

 

  <!-- linguistic information for a sentence. Contains a list of tokens --> 

  <xs:complexType name="sentence"> 

    <xs:sequence> 

      <xs:element name="text" /> 

      <xs:element name="tokens" type="tokenList" minOccurs="0" maxOccurs="1" /> 

    </xs:sequence> 

    <xs:attribute name="id" type="xs:string"/> 

  </xs:complexType> 

 

  <!-- List of tokens in a sentence --> 

  <xs:complexType name="tokenList"> 

    <xs:sequence> 

      <xs:element name="token" type="token" minOccurs="0" maxOccurs="unbounded" /> 

    </xs:sequence> 

  </xs:complexType> 

   



Deliverable D2.1.1 Shallow linguistic processing prototype XLike 

© XLike consortium 2012 - 2014 Page 23 of (29)  

 

  <!-- linguistic information for a token --> 

  <xs:complexType name="token" mixed="true"> 

    <xs:attribute name="id" type="xs:string" /> 

    <xs:attribute name="pos" type="xs:string" /> 

 <xs:attribute name="lemma" type="xs:string" /> 

 <xs:attribute name="start" type="xs:int" /> 

 <xs:attribute name="end" type="xs:int" /> 

  </xs:complexType> 

   

  <!-- A named entity mentioned in the text. Contains a list of specific mentions --> 

  <xs:complexType name="entity"> 

    <xs:sequence> 

      <xs:element name="mentions" type="mentionList" minOccurs="0" maxOccurs="1" /> 

    </xs:sequence> 

    <xs:attribute name="id" type="xs:int" /> 

    <xs:attribute name="displayName" type="xs:string" /> 

    <xs:attribute name="type" type="xs:string" /> 

    <xs:attribute name="concept" type="xs:anyURI" /> 

  </xs:complexType> 

 

  <!-- List of tokens in a sentence --> 

  <xs:complexType name="mentionList"> 

    <xs:sequence> 

      <xs:element name="mention" type="mention" minOccurs="0" maxOccurs="unbounded" /> 

    </xs:sequence> 

  </xs:complexType> 

 

  <!-- A mention to one particular named entity --> 

  <xs:complexType name="mention"> 

    <xs:sequence> 

      <xs:element name="token" type="mentionToken" minOccurs="0" maxOccurs="unbounded" /> 

    </xs:sequence> 

    <xs:attribute name="id" type="xs:int" /> 

    <xs:attribute name="sentenceId" type="xs:string"/> 

    <xs:attribute name="words" type="xs:string" /> 

  </xs:complexType> 

 

  <!-- attributes for mention tokens --> 

  <xs:complexType name="mentionToken"> 

    <xs:attribute name="id" type="xs:string" /> 

  </xs:complexType> 

   

</xs:schema> 



XLike Deliverable D2.1.1 Shallow linguistic processing prototype 

Page 24 of (29)  © XLike consortium 2012 – 2014 

 

Appendix B: Examples of sentences in CoNLL format 

An English sentence 

1 Ms. ms. NNP _ B-PER 2 TITLE _  _ _ 

2 Waleson waleson NNP _ I-PER 3 SBJ _  _ _ 

3 is be VBZ _ O 0 ROOT _  _ _ 

4 a a DT _ O 8 NMOD _  _ _ 

5 free free JJ _ O 7 HMOD _  _ _ 

6 - - HYPH _ O 5 HYPH _  _ _ 

7 lance lance NN _ O 8 NMOD _  AM-MNR _ 

8 writer writer NN _ O 3 PRD writer.01 A0 A1 

9 based base VBN _ O 8 APPO base.01  _ _ 

10 in in IN _ O 9 LOC _  _ AM-LOC 

11 New new NNP _ B-LOC 12 NAME _  _ _ 

12 York york NNP _ I-LOC 10 PMOD _  _ _ 

13 . . . _ O 3 P _  _ _ 

 

A German sentence 

1 Der  der  ART Nom|Sg|Masc  O 3 NK 

2 texanische texanisch ADJA Pos|Nom|Sg|Masc O 3 NK 

3 Milliardär Milliardär NN Nom|Sg|Masc  O 6 SB 

4 Ross  Ross  NE Nom|Sg|Masc  B-PER 5 PNC 

5 Perot  Perot  NE Nom|Sg|Masc  I-PER 3 NK 

6 hat  haben  VAFIN 3|Sg|Pres|Ind  O 0 ROOT 

7 das  der  ART Acc|Sg|Neut  O 9 NK 

8 politische politisch ADJA Pos|Acc|Sg|Neut O 9 NK 

9 Establishment Establishment NN Acc|Sg|Neut  O 12 OA 

10 in  in  APPR _   O 9 MNR 

11 Washington Washington NE Dat|Sg|Neut  B-LOC 10 NK 

12 aufgeschreckt aufschrecken VVPP Psp   O 6 OC 

13 .  _  $. _   O 6 PUNC 
 

A Spanish sentence 

1 Alcan Alcan n postype=proper|gen=c|num=c B-ORG 2 suj 

2 es  ser v postype=semiaux.|gen=c|num=s|person=3|mood=ind.|tense=pres. O 0  sentence 

3 una  uno d postype=indefinite|gen=f|num=s O 2 atr 

4 de  de s postype=preposition|gen=c|num=c O 3 sp 

5 las  el d postype=article|gen=f|num=p O 7 spec 

6 mayores mayor a postype=qualificative|gen=c|num=p O 7 s.a 

7 empresas empresa n postype=common|gen=f|num=p O 4 sn 

8 del  del s postype=preposition|gen=m|num=s|contracted=yes O 7 sp 

9 mundo mundo n postype=common|gen=m|num=s O 8 sn 

10 dedicada dedicar v postype=main|gen=f|num=s|mood=pastparticiple O 3 S 

11 a  a s postype=preposition|gen=c|num=c O 10 creg 

12 la  el d postype=article|gen=f|num=s O 13 spec 

13 producción producción n postype=common|gen=f|num=s O 11 sn 

14 de  de s postype=preposition|gen=c|num=c O 13 sp 

15 aluminio aluminio n postype=common|gen=m|num=s O 14 sn 

16 .  . f punct=period O 2 f 

 

A Catalan sentence 

1 Unio_de_Pagesos Unio_de_Pagesos n postype=proper|gen=c|num=c B-ORG 3 suj 

2 va anar v postype=auxiliary|gen=c|num=s|person=3|mood=indicative|tense=present O 3 v 

3 demanar demanar v postype=main|gen=c|num=c|mood=infinitive O 0 sentence 

4 als al s postype=preposition|gen=m|num=p|contracted=yes O 3 ci 

5 assistents assistent n postype=common|gen=c|num=p O 4 sn 

6 que que p postype=subordinating O 8 conj 

7 participin participar v postype=main|gen=c|num=p|person=3|mood=subjunctive|tense=present O

 3 cd 

8 a a s postype=preposition|gen=c|num=c O 7 creg 

9 la el d postype=article|gen=f|num=s O 10 spec 

10 manifestacio  manifestacio n postype=common|gen=f|num=s O 8 sn 

11 de de s postype=preposition|gen=c|num=c O 10 sp 

12 Madrid Madrid n postype=proper|gen=c|num=c B-LOC 11 sn 

13 . . f punct=period O 3 f 

 

 



Deliverable D2.1.1 Shallow linguistic processing prototype XLike 

© XLike consortium 2012 - 2014 Page 25 of (29)  

 

A Chinese sentence 

 

 



XLike Deliverable D2.1.1 Shallow linguistic processing prototype 

Page 26 of (29)  © XLike consortium 2012 – 2014 

 

Appendix C: XLike web service definition 

Overall web services definition 

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 

                  xmlns:tns="http://localhost:9090/axis2/services/analysis_LANG/" 

                  xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 

                  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

                  name="analysis_LANG" 

                  targetNamespace="http://localhost:9090/axis2/services/analysis_LANG/"> 

 

  <!-- WSDL - Types --> 

  <wsdl:types> 

    <xsd:schema targetNamespace="http://localhost:9090/axis2/services/analysis_LANG/"> 

       

      <!-- Analysis request. Contains a required parameter "text", plus other optional parameters --> 

      <xsd:element name="analysisRequest"> 

        <xsd:complexType> 

          <xsd:sequence> 

     <!-- Required parameters. Common to all languages --> 

            <xsd:element name="text" type="xsd:string" /> 

     <!-- Optional parameters. Common to all languages --> 

            <xsd:element name="input" type="xsd:string" minOccurs="0" maxOccurs="1"  /> 

            <xsd:element name="target" type="xsd:string" minOccurs="0" maxOccurs="1" /> 

            <xsd:element name="conll" type="xsd:boolean" minOccurs="0" maxOccurs="1" /> 

     <!-- Tool parameters. May differ between languages or between language analysis tools --> 

            <xsd:element name="numbers" type="xsd:boolean" minOccurs="0" maxOccurs="1" /> 

            <xsd:element name="punct" type="xsd:boolean" minOccurs="0" maxOccurs="1" /> 

            <xsd:element name="dates" type="xsd:boolean" minOccurs="0" maxOccurs="1" /> 

            <xsd:element name="multiw" type="xsd:boolean" minOccurs="0" maxOccurs="1" /> 

            <xsd:element name="quant" type="xsd:boolean" minOccurs="0" maxOccurs="1" /> 

            <xsd:element name="ner" type="xsd:boolean" minOccurs="0" maxOccurs="1" /> 

            <xsd:element name="nec" type="xsd:boolean" minOccurs="0" maxOccurs="1" /> 

          </xsd:sequence> 

 </xsd:complexType> 

      </xsd:element> 

       

      <!-- Response to analysis request. Contains a structure with linguistic information on input text  --> 

      <xsd:element name="analysisResponse"> 

         <xsd:element name="item" type="item" /> 

      </xsd:element>  

 

      <!-- item contains information about a news item -->   

      <xsd:complexType name="item"> 

 <xsd:sequence> 

   <xsd:element name="sentences" type="sentenceList" minOccurs="0" maxOccurs="1" /> 

   <xsd:element name="entities" type="entityList" minOccurs="0" maxOccurs="1" /> 

   <xsd:element name="conll" minOccurs="0" maxOccurs="1" type="xsd:string" /> 

 </xsd:sequence> 

      </xsd:complexType> 



Deliverable D2.1.1 Shallow linguistic processing prototype XLike 

© XLike consortium 2012 - 2014 Page 27 of (29)  

 

       

      <!-- List of sentences in the item --> 

      <xsd:complexType name="sentenceList"> 

 <xsd:sequence> 

   <xsd:element name="sentence" minOccurs="0" maxOccurs="unbounded" type="sentence" /> 

 </xsd:sequence> 

      </xsd:complexType> 

       

      <!-- List of entities in the item --> 

      <xsd:complexType name="entityList"> 

 <xsd:sequence> 

   <xsd:element name="entity" type="entity" minOccurs="0" maxOccurs="unbounded" /> 

 </xsd:sequence> 

      </xsd:complexType> 

       

      <!-- linguistic information for a sentence. Contains a list of tokens --> 

      <xsd:complexType name="sentence"> 

 <xsd:sequence> 

   <xsd:element name="text" /> 

   <xsd:element name="tokens" type="tokenList" minOccurs="0" maxOccurs="1" /> 

 </xsd:sequence> 

 <xsd:attribute name="id" type="xsd:string"/> 

      </xsd:complexType> 

       

      <!-- List of tokens in a sentence --> 

      <xsd:complexType name="tokenList"> 

 <xsd:sequence> 

   <xsd:element name="token" type="token" minOccurs="0" maxOccurs="unbounded" /> 

 </xsd:sequence> 

      </xsd:complexType> 

       

      <!-- linguistic information for a token --> 

      <xsd:complexType name="token" mixed="true"> 

 <xsd:attribute name="id" type="xsd:string" /> 

 <xsd:attribute name="pos" type="xsd:string" /> 

 <xsd:attribute name="lemma" type="xsd:string" /> 

 <xsd:attribute name="start" type="xsd:int" /> 

 <xsd:attribute name="end" type="xsd:int" /> 

      </xsd:complexType> 

       

      <!-- A named entity mentioned in the text. Contains a list of specific mentions --> 

      <xsd:complexType name="entity"> 

 <xsd:sequence> 

   <xsd:element name="mentions" type="mentionList" minOccurs="0" maxOccurs="1" /> 

 </xsd:sequence> 

 <xsd:attribute name="id" type="xsd:int" /> 

 <xsd:attribute name="displayName" type="xsd:string" /> 

 <xsd:attribute name="type" type="xsd:string" /> 

 <xsd:attribute name="concept" type="xsd:anyURI" /> 

      </xsd:complexType> 

       

      <!-- List of tokens in a sentence --> 



XLike Deliverable D2.1.1 Shallow linguistic processing prototype 

Page 28 of (29)  © XLike consortium 2012 – 2014 

 

      <xsd:complexType name="mentionList"> 

 <xsd:sequence> 

   <xsd:element name="mention" type="mention" minOccurs="0" maxOccurs="unbounded" /> 

 </xsd:sequence> 

      </xsd:complexType> 

       

      <!-- A mention to one particular named entity --> 

      <xsd:complexType name="mention"> 

 <xsd:sequence> 

   <xsd:element name="token" type="mentionToken" minOccurs="0" maxOccurs="unbounded" /> 

 </xsd:sequence> 

 <xsd:attribute name="id" type="xsd:int" /> 

 <xsd:attribute name="sentenceId" type="xsd:string"/> 

 <xsd:attribute name="words" type="xsd:string" /> 

      </xsd:complexType> 

       

      <!-- attributes for mention tokens --> 

      <xsd:complexType name="mentionToken"> 

 <xsd:attribute name="id" type="xsd:string" /> 

      </xsd:complexType> 

       

    </xsd:schema> 

  </wsdl:types> 

   

  <!-- WSDL - Messages --> 

  <wsdl:message name="analyzeRequest"> 

    <wsdl:part name="part1" element="tns:analysisRequest" /> 

  </wsdl:message> 

  <wsdl:message name="analyzeResponse"> 

    <wsdl:part name="part1" element="tns:analysisResponse" /> 

  </wsdl:message> 

   

  <!-- WSDL - portType --> 

  <wsdl:portType name="analysis_LANG"> 

    <wsdl:operation name="analyze"> 

      <wsdl:input message="tns:analyzeRequest" /> 

      <wsdl:output message="tns:analyzeResponse" /> 

    </wsdl:operation> 

  </wsdl:portType> 

   

  <!-- WSDL - Binding --> 

  <wsdl:binding name="analysis_LANG_SOAP" type="tns:analysis_LANG"> 

    <soap:binding style="document" 

                  transport="http://schemas.xmlsoap.org/soap/http" /> 

    <wsdl:operation name="analyze"> 

      <soap:operation soapAction="analysis_LANG#analyze" /> 

      <wsdl:input> 

        <soap:body use="literal" /> 

      </wsdl:input> 

      <wsdl:output> 

        <soap:body use="literal" /> 

      </wsdl:output> 



Deliverable D2.1.1 Shallow linguistic processing prototype XLike 

© XLike consortium 2012 - 2014 Page 29 of (29)  

 

    </wsdl:operation> 

  </wsdl:binding> 

   

  <!-- WSDL - Service --> 

  <wsdl:service name="analysis_LANG"> 

    <wsdl:port binding="tns:analysis_LANG_SOAP" name="analysis_LANG_SOAP"> 

      <soap:address location="http://localhost:9090/axis2/services/analysis_LANG" /> 

    </wsdl:port> 

  </wsdl:service> 

</wsdl:definitions> 

 

An example of FreeLing-based web service 

<service name="analysis_LANG"> 

  <parameter name="ServiceClass" locked="xsd:false">analysis_LANG</parameter> 

  <description>WS providing access to all FreeLing funcionalities for LANG</description> 

  <operation name="analyze"> 

    <messageReceiver class="wsf_cpp_msg_recv" /> 

    <parameter name="RESTMethod">GET</parameter> 

    <parameter name="RESTLocation">analyze</parameter> 

    <!--  

     Operation 'analyze' has the following parameters:  

     

     Required parameters:   

          text : Text to analyze. 

     

     Optional parameters:  

       target : Desired analysis {tokens,lemmas,entities,relations} 

                Default value: entities 

       input  : Input analysis level {text, tokens, lemmas, entities} 

                Default value: text 

       conll  : Produce output in conll format. Boolean (def: false) 

 

     Analyzer parameters (may differ from one language to another) 

       numbers: Activate numbers detection. Boolean (def: true) 

       punct  : Activate punctuation detection. Boolean (def: true) 

       dates  : Activate dates detection. Boolean (def: true) 

       multiw : Activate multiword detection. Boolean (def: true) 

       ner    : Activate NE detection. Boolean (def: true) 

       nec    : Activate NE classification. Boolean (def: true) 

       quant  : Activate quantities detection. Boolean (def: true) 

       parser : Select parser to use {txala,treeler} 

                Default value: txala 

    --> 

  </operation> 

</service> 

 


