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Executive Summary  

The deliverable presents an early version of a prototype for automatic event extraction. It starts by 
introducing the concept of an event and the core features that are used to describe it. The events are the 
main building block for our main goal, which is building a global event registry that would contain 
automatically identified events that occurred across the world and are being written about in different 
languages.  

In order to identify events we developed a clustering algorithm that is able to group articles based different 
article features. Each identified cluster of articles initially represents a separate event. Once a cluster of 
articles is identified we extract key information about the event – title of the event, time when it happened, 
location and main entities involved in it. Since each cluster contains only articles in the same language we 
also need to identify and merge it with clusters in other languages that are describing the same event. We 
achieve this using the cross-lingual document linking approach described in D4.1.1. After the processing of 
an event is complete, we store it in the event registry. Event registry provides an API that allows the users to 
search for events based on several criteria, to visualize and aggregate the search results and to view individual 
event information. Based on the extracted event information we are also able to compare events and identify 
other related events. 

The prototype described in this document depends on former parts of the project – WP1, WP2 and WP3. It 
is assumed here that the language processing pipeline developed in these work packages is prepared and 
functioning. 

The developed prototype is currently available at http://eventregistry.ijs.si/. 

http://eventregistry.ijs.si/
http://eventregistry.ijs.si/
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Abbreviations 

API  Application programming interface 

BIC  Bayesian information criterion  

BOW  Bag-of-words  

B/S  Browser/Server  

LOD  Linked open data  

TF-IDF   Term frequency – inverse document frequency  

UML   Unified modelling language 
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Definitions 

Article An instance of a news report.  

Entity Person, Organization or Location contained in the Title or Content of an Article 

Concept Entity or a general thing that can be recognized and annotated in the articles 
(such as hunger strike, lawyer, military, cost, debate, etc.) 

Cluster A group of articles describing the same event 

Event An event is anything significant that is occurring in the world 

Event registry A database of identified events 
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1 Introduction 

There are thousands of news articles written and published every day by news agencies all across the world. 
They are written in various languages and discuss all possible topics. A large percentage of these articles are 
discussing world events – current, past and future. There is no generally accepted definition of an event, but 
one intuitive definition is that an event is any significant happening in the world. Two instances of an event 
are, for example, Felix Baumgartner’s jump from a helium balloon on October 14, 2012 and bombings during 
the Boston marathon on April 15, 2013. 

The way people today consume news and learn about world events leaves much to be desired. Firstly, despite 
being interested in events, the actual "unit" of content that we consume is an article. If we wish to have 
broader, more complete and objective knowledge of the event we need to manually check multiple news 
sources and find different articles about the event. Secondly, although most articles about events answer the 
main questions about who, where, when and what, this information remains hidden in the text and requires 
the reader to manually extract it by reading the article. The lack of explicit knowledge does not only mean 
inefficient consumption of news for the reader, but also prevents us from having any kind of search engine 
for finding events based on these criteria. Lastly, our options for exploring related or similar events are very 
limited. News sources do sometimes provide links to related articles but they are typically bound to the same 
news source and contain just a few articles that were manually selected by the editors.  

There is a lack of information also on the side of the news publishers. They have no analytics that could in 
each moment identify the events that are currently trending by other similar publishers. Similarly, they are 
unable to see how good/bad their coverage is of individual topic areas compared to other news publishers. 

In this deliverable (D.4.3.1) we will present an early prototype for event extraction. Our goal is to analyse the 
published articles and identify in them the events that are being reported. The task is closely related to the 
task of topic detection and tracking (TDT) [JA98] which was a DARPA sponsored initiative to finding and 
following new events in the stream of news articles. The TDT problem consists of three major tasks: 1) 
segmenting news stream into different stories, 2) identifying those articles that are describing a new event, 
and 3) given a small sample of articles about an event finding all other articles describing the same event. 
Similarly as in TDT, we also want to identify groups of articles that are describing the same event. In addition, 
however, we also want to process the groups of articles in order to extract from them relevant event 
information, such as time of the event, location, what the event is about, event type, etc. Due to importance 
of cross-linguality in the XLike project we also want to see articles in different languages discussing the same 
event being recognized and represented as a single event. Additionally, we also want to build a global 
repository of all recognized events and provide search functionality for identifying events based on various 
search criteria. We want to enable the users to view individual events as well as see an overview of several 
events using different kinds of visualizations. 

In the next section we will describe in details the individual parts of the pipeline. We will start by describing 
the data collection process and the ways in which each article is processed before it is being used. We will 
present the clustering algorithm that we use for identifying the groups of articles in the same language that 
describe a single event. Next, the cluster merging approach will be described that can identify if articles in 
different languages are discussing the same event. When groups of clusters are identified we then extract 
from them the relevant event information – title, date, location, entities, etc. We also describe the event 
registry and its main API calls that can be used to search for events. In the end we list the future work and 
end with a conclusion.  
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2 Event detection pipeline 

In order to detect and store events we use the pipeline shown in Figure 1. The pipeline contains four main 
parts: 

1. Input data; provides input data that can serve for event extraction 

2. Pre-processing steps; collected articles are individually processed by linguistic tools developed in 
WP2 and WP3 in order to extract available semantic information 

3. Event construction; in this phase we identify groups of articles that correspond to individual events. 
From each identified group we extract available event information (time, location, entities, and type). 

4. Event storage & maintenance; after the events are constructed they are stored in a database of 
events and are indexed across different fields to provide search functionalities. 

In the rest of the section we will now describe in more detail individual parts of the pipeline together with 
the expected inputs and outputs. 

2.1 Input data 

In order to identify events we need to use some learning data. In our case, the learning data is a feed of 
articles that we obtain from the Newsfeed service (http://newsfeed.ijs.si/) [D1.3.1]. The service constantly 
monitors and collects articles from more than 75.000 RSS feeds. The feeds represent various worldwide news 
sources (majority) or blogs (minority).  

2.2 Pre-processing steps 

Before we can try extracting events from the collected articles we want to extract as much semantic 
information from the articles as possible. Currently, there are four main tasks that we rely on: semantic 

  

 

Figure 1 Pipeline used for detection and storage of events 
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annotation of article text, cross-lingual article matching, extraction of date references, and detection of 
article duplicates. 

Semantic annotation of article text 

Semantic enrichment of text is provided by services developed in WP2 and WP3. For the purpose of event 
extraction, the most important part of enrichment is the detection of named entities [D2.1.1, D3.1.1] and the 
ontology based word-sense-disambiguation [D3.2.1]. When extracting information about an event, the 
detected named entities enable us to understand what the event is about and where it occurred. 

Cross-lingual article matching 

The Cross-Lingual Similarity Service (CLSS) (described in [D4.1.1]) can be used for providing cross-lingual 
functionality in event extraction. The service can compute an approximate similarity between English, 
German, Spanish and Chinese news articles. Computation of the cross-lingual similarities is based on an 
aligned set of basis vectors obtained by one of two methods: latent semantic indexing (LSI) and a generalized 
version of canonical correlation analysis (CCA) by using an aligned multi-lingual corpus. Given a newsfeed 
article as an input, it returns ids of top 10 most similar articles for each language in JSON format (see example 
below). The service uses one day buffer of articles which is suitable for event detection since an event is 
typically reported for a short time period. 

{"id":66701562, 
  "similar_articles_spa": [{"id":66701512,"sim":0.1364}, …], 
  "similar_articles_deu": […], 
  "similar_articles_fra": […], 
  … 
}. 

Extraction of date references 

This component is responsible for identifying date references in text of the articles. Detecting date references 
is important for the purpose of determining the time when the event happened. Date detection was not yet 
developed as a part of any other work packages so we had to implement it for the purpose of event 
extraction. Our implementation is based on a set of regular expressions developed for each language 
separately. Based on the article language, the appropriate set of regular expressions is selected and used to 
identify date occurrences. Since events can either occur at a single point in time (Bombing attack in Syria) or 
across a certain time period (starting and ending date, e.g. 27th July – 12th August for London Summer Olympic 
Games) we developed a separate group of expressions for detecting date ranges and a group for expressions 
for detecting single date occurrences.  

An example of a single regular expression for detecting a date range from English articles is provided below: 

\b(?P<day1>\d{1,2})(?:st|nd|rd|th)?(?:(?:\sof\s)|(?:-|–|—)|(?:\.\s?)|\s)? 

(?P<month1>(?:jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)[a-z]*)\.?(?:(?:\s? (?:-|–|—

|,|')?\s?)?(?P<year1>\d{2}|\d{4}))?(?:\s?(?:to|through|until|and|(?:-|–|—))\s?) 

(?P<day2>\d{1,2})(?:st|nd|rd|th)?(?:(?:\sof\s)|(?:-|–|—)|(?:\.\s?)|\s)? 

(?P<month2>(?:jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)[a-z]*)\.?(?:(?:\s? (?:-|–|—

|,|')?\s?)?(?P<year2>\d{2}|\d{4}))?\b 

The expression can identify date mentions in the form of “15th of September 2003 to 20th of November 
2012” including numerous variations. Similarly, an example of a regular expression for matching a single date 
occurrence looks like: 

\b(?P<month>(?:jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)[a-z]*)\.?(?:(?:\sthe\s)|(?:-|–|—

)|\s)(?P<day>0?[1-9]|[12][0-9]|3[01])(?:st|nd|rd|th)?(?:,?\s'?(?P<year>\d{2}|\d{4}))?\b 

This expression can be used to identify date occurrences such as “September 22, 2013”.  
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As can be seen from both examples, both types of expressions also match incomplete date references (such 
as September 2012 or 15th of July). Incomplete dates cannot represent a valid date for an event, but as it will 
be seen in section “Extracting event date” we can alleviate this problem if we are able to identify similar 
articles with complete date references. 

Another problem that occurs when extracting date occurrences is ambiguity caused by different formats in 
which dates can be written (m/d/y in U.S. vs. d/m/y in Europe). When month or day digit is above 12 there 
is no ambiguity. In other cases we have to, however, mark the date as ambiguous since we cannot assure the 
correct date interpretation.  

The procedure for identifying the date occurrences works in two steps. In first step we search for possible 
date ranges. Detected dates, if found, are marked as seen before we run the next step in which we search 
for individual date mentions, which were not yet detected in the first step. All detected dates are normalized 
into the form YYYY-MM-DD. If year or day information is missing, the corresponding part is left empty. 
Information about the detected dates is then stored in XML format inside <article> XML tag. Here is an 
example of a detected date and date range in XML format: 

<date date=”2012-09-“ ambiguous=”false” /> 

<daterange dateStart=”2012-01-13” dateEnd=”2012-01-18” ambiguousStart=”false” ambiguousEnd=”false” 

/> 

Detection of article duplicates 

By analysing the articles from Newsfeed we found that it provides many duplicated articles, which contain 
the same or almost the same content as other articles. Duplicated articles are sometimes generated when a 
news source updates and republishes their own article, or by a news source that simply copies an existing 
article from a different publisher. Here is an example of two such articles: 

Article 1: 

Title: Record profit signals healthier Fannie Mae 

Body: WASHINGTON (AP) -- Fannie Mae said something Thursday that would have been unthinkable a… 

News source: San Francisco Chronicle 

Article 2: 

Title: Record profit signals healthier Fannie Mae 

Body: WASHINGTON (AP) -- Fannie Mae said something Thursday that would have been unthinkable a… 

News source: Omaha World-Herald 

In principle, there is no issue in having multiple copies of the same articles in the event detection system. 
There are however some parts of the pipeline that can be negatively affected by such duplicated content, 
especially if the duplicates are numerous (one of our tests identified articles that had more than 100 
duplicated articles). In article clustering, for example, that will be described in the next section, the articles 
are grouped by their similarity using a clustering method. In case a cluster contains multiple copies of the 
same article, this can significantly skew the cluster’s properties – its centroid, variance and the medoid article. 
Additionally, the duplicated articles can overestimate the support for cluster merging in the cross-lingual 
cluster merging (Section 2.4). 

In order to determine if an article is a duplicate or not we implemented the following procedure. Given a new 
article, we first compute a hash code using the article title. We then check a dictionary containing existing 
hash codes and find previously seen articles with the same hash code (meaning, the previous articles with 
the same title). Many duplicated articles keep the same title, so finding articles with the same title provides 
us candidates, which we wish to explore further. In the next step we check the actual article content of each 
of the candidates. Since news sources sometimes add small modifications (such as adding the title of the 
news source) we do not want to directly compare article content. Instead, we transform the article contents 
into the bag-of-words form and compare the individual word frequencies. If the discrepancy between two 
articles is less than 5 words then we mark the article as a duplicate and further steps in the pipeline can take 
this information into account.  
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Since titles are also sometimes modified we do a similar comparison by computing the hash code on the 
tested article content. We then find other articles with same hash code for their content and test the 
candidates by comparing the bag-of-words. As before, if difference between articles is less than 5 words then 
article is marked as a duplicate. 

2.3 Article clustering 

Article clustering is performed using a NewsCluster, which is a web service for microclustering a stream of 
news documents, based largely on the approach of C. Aggarwal et al. [AY06, AY10, AHWY03]. The service 
maintains a set of documents partitioned into a number of (relatively small) clusters. Old documents are 
periodically discarded, thereby keeping the cluster structure focused on the current state of the data stream. 

Architecture 

The NewsCluster web service runs as a simple HTTP server. It accepts incoming HTTP requests containing the 
text of new documents that need to be added to the clustering, and it reports the resulting (document ID, 
cluster ID) pairs to a set of zero or more "listeners", i.e. other web services whose URLs are passed to the 
NewsCluster service as command line parameters. The NewsCluster service periodically saves its state to disk 
and performs other maintenance operations, such as discarding old documents and deleting clusters that fall 
below a minimum size threshold. 

 

 

Figure 2 Architecture of the clustering service 

 
If we look at it more closely, the incoming HTTP request is expected to provide the following information:  

 a unique document ID: this can be an arbitrary string, but if NewsCluster finds that a document 

with the same ID already exists in its database, the new document provided by the request is 

ignored; 

 the full text of the document; 

 optionally, a title of the document, but this is used only for diagnostic purposes and does not 

participate in the feature construction process; 

 the language of the document: NewsCluster processes documents from each language separately 

from those of other languages, meaning that they will not end up in the same clusters, and the 
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feature space (including document frequencies of features etc.) is constructed separately for each 

language; 

 optionally, the request may also contain a set of concept ID, weight pairs; such concepts are 

treated as additional features in the document representation (on which see more below), on top 

of the features which NewsCluster obtains from the full text using the bag-of-words principle.  

Document representation 

For the purposes of clustering, each document is represented by a TF-IDF feature vector. First, the text of the 
document is split into words using a slightly adapted version of the Unicode word breaking rules [Dav12]. 
Next, stopwords are removed if a stopword list for the language of the document is available; currently, the 
NewsCluster service has stopword lists for English, German, French, Spanish, Italian, Portuguese, and Dutch.  

The remaining words are used as the basis of a bag-of-words representation: the document is represented 
by a sparse feature vector containing one component for each word that appears anywhere in the document 
set so far. The value of the component corresponding to word t in the feature vector representing the 
document d is defined as TFIDF(t, d) = TF(t, d) · IDF(d), where TF(t, d) is the term frequency (the number of 
occurrences of term t in the document d) and IDF(t) = log(N / DF(t)) is the inverse document frequency, 
obtained from N (the total number of documents currently maintained in the collection) and DF(d) (the 
document frequency of t, i.e. the number of documents in which t occurs at least once).  

Optionally, the NewsCluster service can use n-grams (sequences of up to n adjacent words) as features, in 
addition to individual words. 

If the incoming request contained the optional set of concept ID, weight pairs, a TF-IDF vector is also formed 
from these pairs. In this case, the weight is used as the TF, and a DF (and hence IDF) is computed for each 
concept just as it would be for features arising from the full text. 

This results in two feature vectors, xt arising from terms and xc arising from concepts; they are concatenated 

into the final feature vector of the document: x = xt, xc. Each part is normalized separately such that after 
normalization, ||x|| = 1 and ||xc|| = w ||xt||. Here, w is a user-provided parameter (conceptWeight on the 
command line) that defines the relative importance of concepts to terms in the final feature vector.  

Internally, the service stores not only the normalized TF-IDF vector of each document, but also its TF vector 
and the original full text of the document. 

Document weighting 

The influence of a document in any clustering-related operation is weighted by a coefficient that decreases 
exponentially as the age of the document increases. Following [AY06], we use the concept of half-life, which 
is the time period in which a document's weight decreases by one-half. Thus, if t is the timestamp of a given 
document, the weight of this document at time T will be (1/2)(T – t)/H, where H is the half-life period. The 
default value of H is one day, but this can be modified by the user through a command-line parameter. The 
NewsCluster service also allows the weight decay to be disabled by setting H to 0; in this case, every 
document always has a weight of 1, regardless of its age.  

Cluster representation 

Consider a cluster C containing documents d1, ..., dn, represented by their respective feature vectors x1, ..., xn 
and weights w1, ..., wn. We maintain the following aggregate statistics for each cluster: 

 the sum of weights, W = i=1..n wi 

 the sum of squares of weights, W2 = i=1..n wi
2 

 the weighted sum of vectors, S = i=1..n wi xi 

 the squared norm of S, i.e. ||S||2 = STS 
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 the weighted sum of squares, S2 = i=1..n wi ||xi||2 (currently, all xi are normalized to unit length, 

meaning that S2 = W, but in general this might change if we add more features which might not 

participate in the same normalization). 

These aggregate statistics allow us to efficiently compute various useful quantities related to the cluster. For 
example, the centroid of the cluster can be computed as c = (1/W) S. The variance of the cluster, defined as 

d = (1/W) i=1..n wi ||xi – c||2, can be computed efficiently as d = S2/W – ||S||2/W2. With the additional 
assumption that ||xi|| = 1 for all i, we can also efficiently compute the average cosine similarity between 

cluster members and the centroid, defined as a = i=1..n wi cos(xi, c) / W, where cos(xi, c) = xi
Tc / (||xi|| ||c||); 

namely, in this case it is true that  a = ||S||/W. The sum of squares of weights, W2, is useful in the computation 
of the Bayesian Information Criterion (see the section on cluster splitting below). 

The aggregate statistics can also be updated efficiently when a document is added to or removed from the 
cluster, or when the time T at which the weights are computed changes. 

Clustering approach 

Initially, the service starts in a "pre-clustering" state, during which it only accumulates incoming clustering 
without trying to assign them to any clusters. When a certain number of documents of a given language has 
been accumulated (controlled by a command-line parameter, defaulting to 1000), we use a hierarchical 
bisecting k-means (i.e. 2-means) algorithm to obtain an initial partition into clusters, as shown in the following 
pseudocode: 

start by placing all documents into one cluster; 
while the number of clusters is less than the maximum initial number of clusters do: 
 choose the cluster C with the maximum variance from among the current clusters; 
 use bisecting k-means to split it into two subclusters C1 and C2; 
 if neither C1 nor C2 is too small, replace C with C1 and C2 in our current partition; 

At this point, all the listeners are also informed about the initial assignments of documents to clusters. From 
this point onwards, the service enters its normal mode of operation. Whenever a new document arrives, a 
check is first performed if a document with the same title (except possibly in terms of whitespace) already 
exists in the collection; in this case, the new document is not added and a warning is reported instead. 
Otherwise, we proceed by constructing the new document's feature vector and computing the cosine 
similarity between this feature vector and the centroids of all the clusters; the new document is assigned into 
the cluster where this cosine similarity is maximized.  

After the addition of a new document, the cluster is considered for splitting. The conditions for this are that 
it must contain a sufficient number of documents and that sufficiently many additions must have occurred 
since the last time it was considered for splitting. If these conditions are met, we try to split the cluster into 
two subclusters using bisecting k-means. We use a variant of the Bayesian Information Criterion [PM00, 
MG09, Lug12] to decide whether to accept the new split or not. If the cluster is split, all the listeners are 
notified of the new cluster memberships for all the documents affected by the split. 

Background operations 

In the background, the service periodically performs maintenance tasks: saving all data to disk, removing old 
clusters and documents, and merging clusters. 

Removal of old documents is performed when the total number of documents for a given language exceeds 
a user-specified threshold. In this case the oldest few clusters (and all documents belonging to them) are 
deleted until the number of documents drops below the required threshold. For the purposes of this 
operation, the age of the cluster is defined to be the age of the most recent document in the cluster. 

Cluster merging will be described in more detail below. 
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Cluster splitting 

The Bayesian Information Criterion is a statistical criterion for model selection, based on the formula 

 BIC(model) = ln Likelihood(data|model) – (number of parameters in the model)/2 · ln n, 

where n is the number of data points. Following Pelleg and Moore [PM00], we model the clusters c as 

spherical Gaussian distributions N(mc, 2 I) with equal variance 2 but with different means mc. In our case 
the estimation is slightly complicated by the fact that our documents are weighted. In this section, we denote 
the feature vector of document i by xi and the weight of this document by wi; the dimensionality of our 

feature space is denoted by d; the number of clusters is k; we further write Wc = ic wi for the total weight 

of cluster c and W = c Wc for the total weight of all documents. The mean of each cluster is estimated by its 

weighted centroid, mc = ic wi xi / Wc. For an unbiased estimate of 2, we can use 

 S2 = (c ic wi ||xi – mc||2) / c (Wc – ic wi
2 / Wc). 

The sum ic wi ||xi – mc||2 can be expressed as ic wi ||xi||2 / Wc – ||mc||2, which allows us to compute S2 
as well as all the centroids efficiently from the aggregate statistics that we maintain for each cluster (see the 
Cluster representation section above). 

The log-likelihood component of the BIC can now be expressed as  

 ln Likelihood(data|model) = c ic wi ln (p(xi | c) P(c)),  

where P(c) = Wc / W and p(xi | c) =  (22)–d/2 exp(–||xi – mc||2 / 22). Plugging these into the log-likelihood 
formula, and taking into account the definition of S2 above, gives us  

 ln Likelihood(data|model) = c [(–d/2) ln(22) + Wc ln Wc – Wc ln W – ½ (Wc – ic wi
2/Wc)]. 

Thus, the contribution of each cluster c to the log-likelihood component of the BIC can also be computed 
efficiently from the aggregate statistics that we keep for each cluster. 

For the number of parameters in the second component of the BIC, we have k – 1 cluster probabilities (down 

from k due to the constraint that they sum up to 1), k · d centroid coordinates, plus 1 for the variance 2.  The 
ln n factor from the definition of BIC can be replaced by ln W to take the weighted nature of our documents 
into account. Thus, the overall BIC can be written as 

 BIC(model) = c BICc , 

where BICc is the per-cluster BIC: 

 BICc = (–d/2) ln(22) + Wc ln Wc – Wc ln W – ½ (Wc – ic wi
2/Wc) – (d + 1) ln W. 

When evaluating a possible split of the cluster c into two subclusters c' and c'', we have to simply compute 
BICc, BICc' and BICc'', and accept the split if BICc' + BICc'' > BICc. 

Example of a successful split 

The original cluster c had 158 documents with a variance of 0.44; BICc = –8.7e6.  The most highly weighted 
terms in the centroid mc were: BlackBerry:0.686 BBM:0.372 Q5:0.195 Heins:0.159 Android:0.157 
Q10:0.140 iOS:0.133 users:0.124 messaging:0.124 $concept$_38150:0.108 smartphone:0.087. 
(Note that the "$concept$_38150" pseudo-term is one of the features based on concepts that can be 
provided in addition to full text of incoming articles. From the clustering service's point of view, these 
concepts are opaque and known only by their unique identifier.) The medoid (article nearest to the 
centroid) was a document titled "Blackberry Messenger Will be Free iOS and Android App". As it turns out, 
the cluster was actually a mixture of two Blackberry-related topics. The proposed subclusters were: 
— Subcluster c' had 79 documents with a variance of 0.42; BICc' = –4.1e6. The most heavily weighted terms 
in the centroid mc' were: BlackBerry:0.665 Q5:0.338 Q10:0.257 Heins:0.206 smartphone:0.128 
Z10:0.118 markets:0.112 keyboard:0.109 BlackBerry's:0.106 RIM's:0.101 device:0.089 RIM:0.082. 
The medoid was a document titled "BlackBerry announces budget Q5; Z10 gets BB10.1 update", and there 
was a tight cluster of similar documents around it as well (with titles such as "BlackBerry Q5 Hands On: A 
Budget-Friendly BlackBerry for the Masses", "BlackBerry CEO unveils 'slim, sleek' new version", etc.).  
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— Subcluster c'' contained the remaining 79 documents with a variance of 0.39 and BICc'' = –3.8e6. The 
most heavily weighted terms in the centroid mc'' were BlackBerry:0.585 BBM:0.548 Android:0.205 
iOS:0.200 messaging:0.167 users:0.160 $concept$_38150:0.113 service:0.105 Messenger:0.094 
Heins:0.093 app:0.085. The medoid was the same as in the original cluster c, i.e. "Blackberry Messenger 
Will be Free iOS and Android App". 
Since BICc' + BICc'' = –7.9e6 was greater than the old BICc = –8.7e6, the split was accepted. The result of the 
split was that one of the new subclusters, c', contained stories about the launch of the new and cheaper 
BlackBerry Q5 smartphone, while the remaining cluster c'' now consisted almost entirely of stories about 
the release of the BlackBerry Messenger app for iOS and Android systems. This has definitely improved the 
compactness of both clusters. Cluster c' still contains a few documents that are not about its main topic 
(they are still BlackBerry-related news stories, but not about the Q5 launch); this is mainly due to the fact 
that there aren't enough such documents to be split off to a separate cluster of their own (the minimum 
cluster size constraint had been set to 50 documents during that particular test run), though this could 
happen in the future if more stories on those topics arrive.  

Cluster merging 

Periodically (currently this is done once per 15 minutes), the NewsCluster service looks for pairs of very 
similar clusters and considers merging them. First, we compute the cosine similarity between all pairs of 
cluster centroids. The pairs where this similarity was highest are then considered for merging, in decreasing 
order of similarity. (Currently, the number of pairs to be considered is limited to 3 times the total number of 
clusters.) 

For each such pair of clusters, we compute various statistical properties of the clusters in their current state 
as well as of the new cluster that would be the result if these two clusters were merged. The merge is 
performed if at least one of the following criteria is met: 

Cosine similarity criterion: the clusters are merged if the cosine between their centroids is greater than a 
user-specified threshold. 
Lughofer's ellipsoid criterion: following [Lug12], we examine the feature vectors of all the documents 
belonging to cluster a, and compute ca

i as the average i-coordinate of all these vectors and sa
i as the standard 

deviation; the same is done for cluster b. We can now think of each cluster as being approximately an ellipsoid 
whose center is in ca (or cb, respectively) and whose radii are given by sa (or sb, respectively). The merge is 
performed if the ellipsoids overlap sufficiently, i.e. if 

 ||ca|| – ||cb||  f i |ca
i – cb

i| (sa
i + sb

i) / i |ca
i – cb

i|, 

where f is a user-specified parameter (the higher it is, the more merges will be performed). 

Web interface 

To insert a new document, a HTTP POST request should be made to the NewsCluster web service, at the URL 
http://server:port/add-article. The body of the HTTP request should contain (argument name, argument 
value) pairs in URL-encoded form, e.g. 

 id=12345&lang=eng&text=Lorem+ipsum+dolor+sit+amet 

The following arguments are required: id (giving a unique identifier of the document; if a document with the 
same identifier already exists, the new document is ignored); lang (an ISO-639 three-letter code identifying 
the language of the document); title (optional, giving the title of the document); and text (containing the 
actual contents of the document itself).  

Optionally, a set of concept ID,  weight pairs may be provided. If we denote the i-th pair by ci, wi, the pairs 
should be given by two parameters in the request body: 

 &conceptIds=c1,c2,...,cn&conceptWgts=w1,w2,...,wn 

The concept IDs may be arbitrary strings (not containing special characters such as commas etc.) and the 
weights may be any floating-point numbers. 
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Return value: the body of the HTTP request contains a JSON value of the form 

 {"ClusterId":"cluster identifier"} 

where the cluster identifier is a string that globally uniquely identifies the cluster into which the new 
document has been placed. Additionally, the NewsCluster service will send the new (article ID, cluster ID) 
pair to any listener(s) whose URLs have been passed in the command-line parameters. 

Other commands supported by the NewsCluster web service are: 

http://server:port/save  - forces the service to immediately save its state to disk 

http://server:port/exit  - causes the service to save its state to disk and then terminate 

http://server:port/report - returns an HTTP response containing an HTML report on the current state of the 
clusters. The optional parameter ?centroids=1 will cause cluster centroids to be included. The optional 
parameter ?lang=language&clusterId=number will generate a report on the cluster whose internal number 
is given by the number parameter; this report includes the list of documents in the cluster. Note that the 
reports returned by the report command are not intended to be machine-readable, but to be human-
readable for debugging and informational purposes. 

2.4 Cross-lingual cluster matching 

Clustering service is running separately for each of the article languages. As a result, each cluster only 
contains articles from a single language. Since we know that articles in different languages can still discuss 
the same event we needed to create methods for identifying separate clusters that in different languages 
talk about the same event. 

In order to identify clusters which need to be merged we used information from the Cross-Lingual Similarity 
Service (CLSS) which for each article identifies 10 most similar articles in English, German, Spanish and 
Chinese language. Intuition behind the developed algorithm is that if many articles from a cluster have most 
similar articles that belong to a single cluster then the clusters are likely about the same event. The algorithm 
is shown in Error! Reference source not found.Error! Reference source not found. and works as follows. 

Algorithm: identifying clusters in different languages that discuss the same event 
Input: clustering C containing N=|C| clusters from all languages 
            cluster ctest (containing M articles) that we wish to consider merging with other clusters 
Output: list sameEvent that contains clusters discussing the same event as cluster ctest 
Methods: topSim(a, l) returns most similar articles for article a in language l 
                   sim(ai, aj) return similarity between articles ai and aj as computed by CLSS service 
                   clust(a) returns id of the cluster to which article a is assigned to 
Init: count[c] := 0 for c=0..N 
         sim[c] := 0 for c=0..N 
         sameEvent := [ca] 
for each article ai in ctest (i=1..M): 
    for each language l in L: 
        for each aj in topSim(ai, l): 
            count[clust(aj)] += 1 
            sim[clust(aj)] += sim(ai, aj) 
for each c in C: 
    avgSim := sim[c] / count[c]; 
    if (avgSim > simTresh & count[c] > ratioTresh*10*M) 
        sameEvent.append(c)  

Figure 3 Algorithm for merging clusters describing the same event 
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Given a cluster of articles ctest we wish to find other clusters c that also describe the same event and merge 
them. We start by initializing two dictionaries – count and sim – that will for each cluster c store relevant 
information about similarity between clusters c and ctest. For each article in the test cluster ctest we then 
identify the most similar articles in all other languages. If test cluster contains M articles then we should for 
each language get 10*M most similar articles. Each of these most similar articles is assigned to one cluster 
and our goal is to determine if some clusters occur very frequently among these articles. For each similar 
article we therefore update the count and sim dictionaries. In the count dictionary we simply increment by 1 
the value for the id of the cluster that similar article is assigned to. For the sim dictionary we use the 
computed similarity between the article in the test cluster and the similar article (similarity value is provided 
by the CLSS service). The similarity value is again used to increase the existing value for the cluster that similar 
article is assigned to.  

After going through all the articles in the cluster we check how frequently each cluster c occurred among the 
most similar articles. We use the frequency of occurrence (the count[c] value) as well as the average similarity 
between the articles (computed from sim[c] and count[c]) to determine if the clusters should be merged. 
Currently used values for threshold parameters are simTresh = 0.6 and ratioTresh = 0.2. Value of parameter 
ratioTresh requires that at least 20% of all most similar articles in a single language point to the same cluster 
in order to merge with it. The current values of parameters were chosen experimentally and will be in the 
future work a subject of more thorough evaluation. 

The result of the described algorithm is a sameEvent list, which contains clusters that discuss the same event 
as cluster ctest. These clusters can be in the following steps merged and represented as a single event. 

2.5 Event formation and event information extraction 

At this point in the pipeline we have already identified groups of articles that describe the same event as well 
as potentially found multiple clusters in different languages about the same event. The next step is for us to 
create an actual event using the clusters and to extract from the articles structured information about the 
event. 

In order to represent an event we have created a data structure that points to one or more clusters, and 
clusters are the data structures that point to individual articles (see UML diagram on Figure 4 for details). 
One could argue that semantically the clusters are somewhat redundant – that articles should simply be 
assigned directly to an event. While this is true, we find that keeping the clusters significantly simplifies the 
event maintenance. To each event that we create we assign a unique id. It’s a number that increases 
monotonically with each event and for a given event always stays the same. 

Events are a very dynamic structures which evolve a lot – at least when events are new and there are new 
articles coming into the system that write about them. Each time a new article is received it is assigned to a 
cluster. Due to online approach to clustering, the clusters can change significantly over time – they can merge 
or split into two clusters and individual articles can be reassigned to a different cluster. Each of these changes 
needs to be propagated also on the level of events. Event updating is done as follows. In case a single cluster 
c is split into two clusters (ca and cb), the larger cluster stays assigned to the same event, while the smaller 
cluster is assigned to a new event. The cross-lingual cluster matching has to be recomputed again for clusters 
ca and cb in order to take into account the changes. Alternatively, two clusters can also merge if the clustering 
method determines that there is sufficient similarity between them. In this case we have two existing clusters 
that are already assigned to two events. In such instances we take the articles from the smaller cluster and 
assign them to the larger cluster. What can happen is that the event, where the smaller cluster was, now has 
no more clusters assigned to it and consequently also no articles. We mark such an event as invalid and 
remove all the extracted information associated with it. Changes to an event can occur also when individual 
articles are simply assigned or re-assigned to an existing cluster. Changing the number of articles in a cluster 
can increase/decrease the support for the cross-lingual cluster matching. To keep the corresponding events 
up-to-date we re-run the cross-lingual cluster matching procedure each time 5 changes are made to a cluster 
(either by assigning new article to it or by re-assigning an existing article to a different cluster). Similarly, all 
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event properties (described in the next paragraphs) are also re-computed whenever 5 changes are made on 
a cluster. 

 

 

Event title and text snippet 

Event title is one of the basic properties that needs to be extracted for each event. Event title should be a 
short text that summarizes what the event is about. If the event is covered in different languages then the 
title needs to be determined for all corresponding languages. To set the title(s) of the event we used the 
clusters of articles assigned to the event. For each of the clusters we identify the centroid article of the cluster 
and use its title as the title of the event for the particular language. The reason for using the centroid article 
is that the article is the closest to the center of the cluster and therefore seems to be best fitted to describe 
the event in that language. The title of the article is used as the title of the event since it is short and should 
summarize the event content. In the future work we plan to work on finding alternative titles based on 
analysing commonalities in article titles for all articles in the cluster.  

We also wish to identify a text snippet that would in a few sentences describe what the event is about. For 
this purpose we also rely on analysing individual clusters of articles and identifying the centroid article. From 
the centroid article we then use the first paragraph as the text snippet for the particular language.  Similarly 
as for the event title we also plan as a part of the future work to analyse different summarization methods 
to identify a better way for identifying the event text snippet. 
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Figure 4 UML diagram of data structures involved in the event registry 
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Extracting event date 

Most events have a particular date that can be associated with the event. This date can be a single day or it 
can be a time period with a starting and ending date.  

In order to determine the event date we use the information about the date references that we extracted 
from individual articles in the pre-processing phase. Our approach iterates over all articles assigned to an 
event and collects the identified date references. Before we start counting how frequently each date 
reference occurs in different articles we also try to take into account the dates with incomplete information. 
As we mentioned in Section 2.2, some articles provide incomplete date information (such as “September 11” 
where the year information is missing). In order to still use such information we try to impute the missing 
values using the complete dates from other articles in the event. If, for example, we find that in these articles 
the date references for September 11 are mostly associated with year 2001, we also assign this year to the 
incomplete references. Once data imputation is finished we count the number of times each date is 
mentioned in the articles and choose the most frequent one. We want to make sure the date is mentioned 
significantly enough in order to use it as the event date so we set a threshold – the date has to occur at least 
in 30% of all articles assigned to an event. Although we presented the method as if we were only analysing 
the single day occurrences, we do in the same way analyse also the detected time periods. If the most 
mentioned time period is more frequent than the most mentioned single date then we use the time period 
as the starting and ending date of the event. 

Some events don’t contain any date references or the ones mentioned are not frequent enough to be 
considered as reliable. In such cases we decided to rely on the dates when the articles were published. We 
could assume that an event is only being reported after it happens so in principle we could use the date of 
the first article as the date of the event. Our early experiments indicated that setting event date based on a 
single article can be problematic. Clusters sometimes contain incorrectly assigned articles and taking the 
earliest article date can set too early date for the event. To be more conservative we decided to simply 
compute the average date of the articles for the event and use that date as the event date. Using this date is 
also not ideal and mostly sets the event to a later date than it should – it is however more reliable since it is 
computed based on several articles. In future we will try to observe the distribution of article dates and try 
to identify a tipping date at which the number of articles started to significantly increase. Using this tipping 
date as the event date should be a reliable as well as more accurate estimate of the event date. 

Extracting event location 

Many events, such as meetings, sport events, natural catastrophes, bombing attacks etc., are associated with 
geographical location. The location can be a city, area or a whole country. Knowing the location is 
semantically important part of the event so we want to identify it from the articles.  

In order to determine the event location we use the article annotations provided by the text annotation 
prototype [D3.1.1] and the word-sense disambiguation prototype [D3.2.1]. The provided annotations contain 
entities as well as relevant keywords and topics detected in the articles and from these we need to identify 
the mentions of geographic locations.  

In order to build a database of possible geographic locations we used the GeoNames database [Geo] which 
contains over eight million place names. From all the available locations we used those that have a Wikipedia 
page – since the annotation service uses Wikipedia for disambiguation, these are the only locations that the 
service can identify in the text. From GeoNames we also used the information about the location labels in 
different XLike languages, as well as the countries and continents in which the locations are. The country 
information is, for example, necessary if we later wish to search for events not by a particular location but by 
the name of the country. 

Once we were aware of all possible geographic locations we analysed the event articles and identified the 
annotations representing the geographic locations. From all geographic references we selected the one that 
is mentioned most frequently and treat is as a candidate for event location. In order to assure that the 
location is not mentioned just by coincidence we require that it has to be identified in at least 30% of all 
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event articles in order to consider it as the event location. If not location passes this threshold then we 
conclude that the event is not associated with a particular location.  

Extracting event entities and keywords 

Each event discusses one or more keywords and mentions a number of entities – people, organizations and 
locations. These entities and keywords (we will call them concepts) are crucial for understanding what the 
event is about and we wish to identify them and assign them a score of relevance for the particular event. 

For extracting event concepts we again rely on the annotations provided by the text annotation and 
disambiguation services. We start by identifying the concepts that were annotated in articles that are 
assigned to the event. Beside the URI, each concept is also assigned a weight that corresponds to the 
relevance of the concept for the article. The weight is computed based on how frequently the concept 
appeared in the article. If, for example, Barack Obama is frequently mentioned in the article, then he will be 
assigned a high weight. The weights are currently integer numbers ranging from 1 to 5. By going over all 
articles in the event we compute the sum weight for each of the concepts identified in the articles. Concepts 
that occur frequently in the articles with high weights will get a high total weight, while concepts which occur 
rarely and with lower weights will obtain a low total weight. Next, we rank the concepts by their total weight 
and ignore the concepts with total weight lower than M*5*0.1, where M is the number of articles assigned 
to the event. The threshold condition states that a concept is relevant only if it occurs at least in 10% of 
articles with a weight of 5, or correspondingly higher percent of the articles with a lower weight. By ignoring 
the concepts with low weight we are in essence removing the noise, which can occur due to incorrectly 
assigned articles or spurious annotations. The concepts that are above the threshold are used as the event 
entities and topics. Along with the concepts themselves we also use the total weights for the concepts since 
they are a good estimate of what is more/less relevant for the event. The total weights are then normalized 
to the interval [0, 100] and can be seen when viewing the event info. An example of a possible visualization 
of top concepts for event “Hunger strike at Guantanamo enters 100th day” is shown in Figure 5. 

As it can be seen from the Figure 5 we have separate columns for entities and keywords. Entities consist of 
people, locations and organizations. Keywords, on the other hand, are words that were annotated, but don’t 
represent entities. Separation between entities and keywords is informative since each category “explains” 
a different part of the event – entities describe the “who” of the event, while the keywords describe the 
“what”. 

 

Figure 5 Example of top concepts for event “Hunger strike at Guantanamo enters 100th day”. 
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In order to separate between entities and keywords we need to know for each concept URI also its type. The 
types of the concepts are already provided by the word-sense disambiguation service [D3.2.1] but we found 
the accuracy of the service to be inadequate and insufficient for use. To improve the accuracy we built a 
parser for Wikipedia’s info boxes and determined the concept type based on the relations provided in the 
info boxes. We determined relations that are characteristic for individual entity types (person, location, 
organization) and used them to separate entities from keywords. Relations that were, for example, used 
determine that a concept is a person were birth_date, death_date, spouse or children. Similar relations were 
identified also for locations and organizations. If a concept was not identified as one of the entity types then 
it was determined to be a keyword. 

Event categorization 

Events can also be categorized by their types. Because there can be a huge number of possible event topics 
it makes sense to organize them into a taxonomy. An example of a small part of such taxonomy could be a 
root type “Sports”, a sub-type “Athletics” with another sub-type “Triple jump”. Another example could be a 
root type “Natural disasters” with a sub-type “Earthquake”.  

There is no single event type taxonomy that would be the taxonomy. Most news publisher uses one but they 
are considered to be a company secret and are not shared with the outside world. These taxonomies would 
likely be in most part overlapping although we can expect that different publishers have emphasis on 
different areas which means that some parts of the taxonomy are expected to be more/less granular. 

Since we didn’t have access to any taxonomy of events we had to find a publicly accessible taxonomy that 
would suit our needs. The taxonomy that we chose to use is the DMoz [DMoz] taxonomy. DMoz is an open 
directory project that has more than 5 million web pages categorized into a taxonomy with over 1 million 
categories. This number of categories was too large so we decided to only use the categories up to three 
levels deep. The number of categories we obtained in this way was still over 1000 which seems sufficient for 
our needs.  

An even more important part than the taxonomy itself is for us the fact that nodes in the taxonomy also have 
a list of web pages that are associated with the particular category. Since the web pages are discussing the 
topic represented by the category we can learn from them about the characteristic features of each category. 
We do this by obtaining the content of the web pages, transforming them into the bag-of-words format and 
weighting the words using the TF-IDF weighting scheme. The pages for the category and its sub-categories 
can be considered as a cluster in high dimensional space and we can identify the vector representing the 
center of the cluster. By identifying such vectors for each category we are able to obtain compact 
representations for the categories. If we then have a new document that we would like to classify into one 
of the categories we can similarly compute the BOW format of the document, weight the words with TF-IDF 
weighting and use the cosine similarity to compare the document vector with the vectors of individual 
categories. The category with the highest cosine similarity can be chosen as the category of the document. 

For categorization of events we used the DMoz classifier in the following way. For each cluster in the event 
we identified 5 (or less, if cluster was smaller) articles that are closest to the center of the cluster. We merged 
the content of these articles into a single document, computed the BOW format for the document and 
weighted the words with TF-IDF weighting. We identified the category with the most similar vector and 
assigned it to the cluster. It can be surprising that the category is actually assigned to the cluster and not the 
event itself, but there are good reasons for this decision. DMoz classification has to be done for each cluster 
separately since the clusters are built separately for different languages. Having multiple clusters for an event 
it is inevitable that there would be disagreements between the computed categories and there is no clear 
solution how to solve it. Additionally, knowing the categories of individual clusters can also be helpful in our 
future work for deciding whether merging two cross-lingual clusters into an event was correct or not.  
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2.6 Identifying related events 

World events are not separate islands – events are interconnected, they discuss similar topics or are a part 
of a chain of connected events. There are different criteria that we can use to identify related events. In 
principle we can determine event similarity using any of the event properties: 

- Time: using a specific time window can identify very diverse events. Since their only commonality is time, 
the criteria by itself won’t identify strongly related events. 

- Location: location can be an important feature for identifying geographically related events, especially in 
combination with time. It can identify events that touch various topics, which are relevant for a particular 
region. A good example would be finding events occurring in Syria in the last months.  

- Entities and keywords (concepts): By comparing the “what” and “who” of the events we can identify 
events that share similar actors or topics discussed in the events. Using such criteria could identify as 
similar events, such as “Google releasing Android 4.3” and “Google and LG offering Nexus 4”. 

- Category: comparing events based on their type is somewhat related to the comparison using entities 
and keywords. A good example of using the criteria for finding similar events would be looking at an 
earthquake event and finding other examples of earthquakes. 

Most of the described conditions offer a straightforward way for comparing the events. An exception is 
perhaps the entities and keywords condition since each event is associated with a weighted list of concepts 
and it is not obvious how we can compare two such lists. What we decided to do is to use the methodology 
used when comparing documents. Each concept associated with the event is considered to be a document 
term and its weight represents the term frequency for the document. Having the bag-of-words 
representation of the events we also want to apply TF-IDF weighting to take into account that some concepts 
are much more popular than others. After the vectors are weighted we can use any similarity measure (we 
opted for cosine similarity) to compute concept similarity between events. 

2.7 Event registry 

Once the event is identified and processed we store all available information in an event registry. Simply put, 
an event registry is a database of all recognized events. All relevant event parameters are explicitly stored 
and indexed so that an efficient search can be provided across all the events. The information about the 
events is updated regularly when the event changes. Since the event extraction is running on an online 
stream of news articles, the changes of the underlying data structures are very frequent. In order to reduce 
the work load we only update the event properties after we make 5 changes to any of its clusters (adding or 
removing an article to the cluster) or when clusters are merged or split. This sometimes causes some events 
to be slightly outdated but on the other hand keeps the event registry responsive to the API calls. 
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3 Event registry API calls and user interface 

Event registry provides a set of API calls that can be used to query and edit the information about the events. 
In this section we will describe the main calls, its parameters and the output provided by the service. All the 
event related calls have the following format:  

serviceUrl/event?action=eventAction&list-of-parameters-and-their-values 

The eventAction parameter determines the type of the request. The types that we will describe here are 
getEvents, getEventInfo, getEventArticles, getSimilarEvents and getTrendingEvents. Examples of all API calls 
and the returned data are listed in Appendix A. 

3.1 getEvents API call 

The getEvents call is the most important call and is used to query the event registry for events based on 
several possible search conditions. The relevant parameters and their descriptions are listed in Table 1. 

Table 1 Parameters relevant for the getEvents API call 

Parameter Example value(s) Description 

conceptUri pm_person: 
http://en.wikipedia.o
rg/wiki/Barack_Obam
a 

[multiple occurrences] One or more concepts that the event 
is about. If event is not annotated with this concept it will 
not be included among the results. 

timeStart 2013-05-13 [single occurrence] starting date of the time window of 
interest. Events outside of this window will not be returned 
as results. 

timeEnd 2013-05-20 [single occurrence] ending date of the time window of 
interest.  

lang eng | deu | spa |  
zho |slv 

[multiple occurrences] one or more languages that should 
report about the event. If more languages are specified  
then the event should be reported in at least one of the 
languages (operator OR is used between languages, not 
AND) 

locationUri pm_location:http://e
n.wikipedia.org/wiki/
Ann_Arbor,_Michigan 

[single occurrence] a location URI that either represents a 
city or a country. Events that occurred in this city/country 
will be returned as results. 

categoryUri http://dmoz.com/Bus
iness 

[multiple occurrences] one or more URIs that represent the 
event type. Events that belong to the particular type or its 
sub-type will be included in the results. 

minArticlesInEvent 100 [single occurrence] Minimum number of articles that cover 
the event. 

maxArticlesInEvent 500 [single occurrence] Maximum number of articles that cover 
the event. 

publisherUri http://www.indepen
dent.ie/sport/ 

[multiple occurrences] The URI of the publisher that has 
published an article about the event. If a publisher hasn’t 
published any article on the event then the event will not be 
included in the results. 
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resultType list | timeAggr | 
locAggr | conceptAggr 
| trendingConcepts | 
docAtlasOnConcepts 

[mandatory field, single occurence] The type of the results 
we wish to obtain. Possible values are: 

- list. Returns the list of matching events with the basic 
information about the events.  

- timeAggr. Returns the distribution of resulting events 
along time. Used to show the timeline of events. 

- locAggr. Returns the distribution of resulting events in 
different geographical locations. Used to show the map 
of event locations. 

- conceptAggr. Returns the list of entities that most 
frequently appear in the events. Also includes a list of 
entity pairs that most frequently co-occur in the events. 

- trendingConcepts. Returns the trending of the most 
popular concepts for the events. 

- docAtlasOnConcepts. Generates a visualization where 
events are plotted in 2D space and positioned based on 
the similarity of their annotations.  

3.2 getEventInfo API call 

The getEventInfo API call is used to obtain information about a particular event. It expects a single additional 
parameter which is eventId. Given that the provided id is valid, the return value contains the event 
information, which includes all the extracted information about the event except the actual articles assigned 
to the event. 

3.3 getEventArticles API call 

getEventArticles call returns the articles, which are assigned to the event specified in the eventId parameter. 
Table 2 contains the list of possible arguments that can be specified in the request.  

Table 2 Parameters for the getEventArticles API call 

Parameter Example value(s) Description 

lang eng | deu | spa |  
zho |slv 

The language for which we wish to obtain the articles 

page (any number >= 0) page of the articles 

count (any number > 0) Number of articles per page to return 

sortBy rel | time The order in which the returned articles are sorted. Sorting by time 
orders articles from the newest to the oldest. Sorting by relevance 
(rel) orders the articles based on how central they are to the event. 
The value is computed based on the distance of the article from the 
center its cluster. Ordering by relevance is useful because the articles, 
which are far from the center, are possibly incorrectly assigned to the 
cluster and we wish to see them as late as possible. 
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3.4 getSimilarEvents API call 

getSimilarEvents call is used to obtain a list of events that are most similar to the event specified in the eventId 
parameter. Similarity of the events is computed based on the annotated concepts assigned to the events. 
Two optional parameters are count, which sets the number of returned similar events, and addDetails 
(possible values 0 or 1) that determines the amount of details returned for each similar event. 

3.5 getTrendingEvents API call 

getTrendingEvents call returns the list of currently top trending events. The required parameter is lang, which 
determines the language of the trending events. Additionally we can also specify count parameter, that sets 
the number of top trending events returned, and addDetails (possible values are 0 or 1) that determines the 
amount of details returned for each trending event. 

3.6 User interface for event registry 

In order to provide an easy access to event registry we’ve also developed a user interface for the service. The 
user interface currently provides a search interface that can be used to find the desired events based on all 
available search criteria. Figure 6 shows a screenshot of events that were found to be related to Barack 
Obama. The interface allows the user to see the main information about the resulting events as well as two 
visualizations with a summary of the resulting events – a geographic map of events and the timeline view. 
Clicking an event opens a new window containing more detailed information about the event as well as the 
list of actual articles reporting about it.  

 

Figure 6 Screenshot of the event browser user interface 

 



XLike Deliverable D5.2.1 

Page 28 of (36)  © XLike consortium 2012 – 2014 

 

4 Future work 

Although a lot of effort was already put into the event detection and information extraction, we still have a 
lot of ideas for new features and improvements. Here we will briefly mention individual parts of the pipeline 
and their possibilities for improvements. 

The existing clustering method already takes into account article text as well as the annotated concepts 
identified in the article. Semantic role labelling, that is currently being added as a part of the information 
extracted from the articles, could bring additional relevant features, that could be used to achieve even 
better clustering of articles. 

The process of merging of clusters from different languages currently only takes into account cross-lingual 
article similarity provided by canonical correlation analysis. When merging the clusters we plan to also 
include other language independent features, such as detected named entities, category of the cluster, etc. 
By using multiple sources of information we are less likely to make mistakes when joining the clusters. 

The event categorization we currently use relies on DMoz categories. These categories were built to organize 
web pages and are not a very good match for the task of event categorization. In the future we will try to find 
a news publisher who would be willing to share their own taxonomy of event types and use it instead of 
DMoz. Along with the taxonomy we will also need to obtain examples of these event types. These examples 
will serve as learning examples when we will be building a classifier that will be able to classify events into 
the new taxonomy.  

We also plan to use the event taxonomy for obtaining additional semantic information about the events. For 
each event type we will try to identify commonalities among events that are characteristic for the event type. 
For earthquake event type, for example, we can expect that all instances of the event contain the information 
about its location, the magnitude of the earthquake, its duration and potentially the number of victims. 
Similarly, for the football match type, the events should contain the names of the teams playing, the location, 
and the final score. For most event types we hope to be able to identify specific semantic frames that can be 
learned from instances of the event type. Using these semantic frames we should be able to obtain additional 
information about the event that is specific to the event type.  

The relations between the events are very important for finding related information. Currently we haven’t 
yet put a lot of effort into identifying different kinds of possible relations between events. In the future, we 
aim to identify at least three different types of relations between events – weakly related events, hierarchical 
events and events that form a storyline. Weakly related events are events that share some common entities 
and topics, but are not necessarily close in time. Example of such events would be “Google releasing Android 
4.3” and “Google and LG offering Nexus 4”. Storylines are formed from events that are relatively close in time 
and share common entities. Example of a storyline would be events like “Bombing in Syria” and “USA 
planning an attack on Syria” that could be summarized with a storyline “Unrest in Syria”. The third type of 
event relations are hierarchical events. Such events are, for example, different sports events at the Summer 
Olympics 2012. In this case, “100 meters run” and “Triple jump” could be represented as a meta-event 
“Athletic events”. By looking at the differences between different types of relations we will try to identify 
particular characteristics of each type and define methods to automatically identify these relations between 
different events. 

On the side of the user interface we also plan several improvements. An important feature that we want to 
offer is the ability to edit the event information. It is inevitable that some events or their extracted 
information will be incorrect and we want to be able to offer the ability to fix the errors. We also plan to 
implement methods from active learning that will be able to identify events that most likely contain incorrect 
information in order to make event editing more efficient. Since we plan to offer the event registry to the 
publishers we also want to allow them to publish in the registry information about the future events. An 
important part of the future frontend work is also identification of different ways in which the information 
about the events can be visualized and summarized so that the user doesn’t have to go manually through a 
list of possibly thousands of search results.  

Our goal is also to expose the event data as a semantic resource and connect it with other LOD resources. 
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5 Conclusion 

This document presented the methodology we developed in order to identify events from the news articles 
and extract from the articles the relevant event information.  

In order to extract events we use the news articles that are processed by the XLike pipeline. The pipeline 
includes part-of-speech tagging, named entity detection, anaphora resolution and named entity 
disambiguation. For the purpose of the event extraction we also implemented detection of date references 
and detection of article duplicates. Once the articles are processed by the pipeline we use a clustering 
algorithm to group the articles based on their content similarity and the similarity of detected named entities. 
The clustering algorithm works online (clusters are updated each time a new article arrives) which means 
that clusters are frequently changed. Each identified clusters is considered to represent a single event. 
Because each cluster only contains articles in the same language we have also implemented a method for 
determining if two clusters in different languages are actually discussing the same event. If such clusters are 
identified they are represented by a single event. Once events are formed we extract from them the relevant 
information. This information includes the time of the event, its location and the main actors of the event. 
We also perform categorization of the event into one of the DMoz categories.  

The identified events are saved in the event registry where they are indexed across all available event 
features. Event registry allows us to perform search queries on the events. The resulting data can be the 
actual list of matching events or one of the possible data aggregates, which can be used for data visualization. 
The available API calls and their parameters were described in details. In the Appendix we have provided 
sample requests and the corresponding return data.  

The developed prototype is available at http://eventregistry.ijs.si/ . 

http://mustang.ijs.si:8060/
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Annex A Examples of event registry API calls 

GetEvents request for list of events: 

http://eventregistry.ijs.si/json/event?action=getEvents&conceptUri=pm_person%3Ahttp%3A%2F%2Fen.wi
kipedia.org%2Fwiki%2FBarack_Obama&lang=eng&sortBy=rel&page=0&count=25&resultType=list  

Return data:  
{ 
    "results":[{ 
            "id":9502, 
            "uri":"9502", 
            "primaryStory":{ 
                "uri":"491c258e-688f-41de-8c8e-e3ca71f4a19b-7139", 
                "id":9502, 
                "language":"eng", 
                "extractedDate":"2010-10-19", 
                "extractedDateEnd":"", 
                "averageDate":"2013-05-15", 
                "commonDates":[ 
                    { "Amb":false, "Freq":4, "Date":"-05-09" }, 
                    { "Amb":false, "Freq":2, "Date":"2002-01-" }, 
                    { "Amb":false, "Freq":2, "Date":"2010-12-" } 
                ], 
                "extractedDateFq":4, 
                "articleCount":17 
            }, 
            "stories":[{ 
                    "uri":"491c258e-688f-41de-8c8e-e3ca71f4a19b-7139", 
                    "id":9502, 
                    "language":"eng", 
                    "articleCount":17 
                } 
            ], 
            "medoidArticles":[{ 
                    "id":"246036", 
                    "uri":"http://www.foxnews.com/world/2013/05/17/human-rights-watch-says-it-has-found-
evidence-syrians-were-tortured-in/", 
                    "title":"Human Rights Watch report says Syrians were tortured in government prisons", 
                    "body":"<p>BEIRUT - Rights activists visiting abandoned government prisons in the first Syrian city 
to come under rebel control have found torture devices and other evidence that detainees were abused 
there, Human Rights Watch said in a report Friday.\u000a Raqqa, in eastern Syria, was overrun in late 
February by rebels fighting to topple President Bashar Assad.  The rebels facilitated the New York-based 
group's access to facilities that had belonged to a government security agency and military intelligence 
in ...</p>", 
                    "date":"2013-05-17", 
                    "time":"15:34", 
                    "lang":"eng", 
                    "sim":0.6506, 
                    "source_title":"WWW.FOXNEWS.COM", 
                    "source_uri":"www.foxnews.com", 
                    "source_id":"229", 
                    "isDuplicate":false, 
                    "story_id":"9502" 

http://mustang.ijs.si:8060/json/event?action=getEvents&conceptUri=pm_person%3Ahttp%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBarack_Obama&lang=eng&sortBy=rel&page=0&count=25&resultType=list
http://mustang.ijs.si:8060/json/event?action=getEvents&conceptUri=pm_person%3Ahttp%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBarack_Obama&lang=eng&sortBy=rel&page=0&count=25&resultType=list
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            }], 
            "articleCounts":{ "total":17, "eng":17, "deu":0, "spa":0, "zho":0, "slv":0 }, 
            "concepts":[{ 
                    "uri":"pm_person:http://en.wikipedia.org/wiki/Barack_Obama", 
                    "id":"19969", 
                    "type":"pm_person", 
                    "label":"Barack Obama", 
                    "label_eng":"Barack Obama", 
                    "label_deu":"Barack Obama", 
                    "label_spa":"Barack Obama", 
                    "label_zho":"Barack Obama", 
                    "label_slv":"Barack Obama", 
                    "score":100 
                }, 
                { 
                    "uri":"pm_wiki:http://en.wikipedia.org/wiki/Hunger_strike", 
                    "id":"47131", 
                    "type":"pm_wiki", 
                    "label":"Hunger strike", 
                    "label_eng":"Hunger strike", 
                    "label_deu":"Hungerstreik", 
                    "label_spa":"Huelga de hambre", 
                    "label_zho":"Huelga de hambre", 
                    "label_slv":"Huelga de hambre", 
                    "score":98 
                }, 
                ... 
            ] 
        },  
        … 
} 
 
GetEvents request for time distribution of events: 

http://eventregistry.ijs.si/json/event?action=getEvents&conceptUri=pm_person%3Ahttp%3A%2F%2Fen.wi
kipedia.org%2Fwiki%2FBarack_Obama&lang=eng&sortBy=rel&page=0&count=25&resultType=timeAggr 
 
Return data: 
{ 
    "results":[ 
        { 
            "date":"2010-04-20", 
            "count":1 
        }, 
        { 
            "date":"2010-05-06", 
            "count":1 
        }, 
        …. 
} 
 
 
 
 

http://mustang.ijs.si:8060/json/event?action=getEvents&conceptUri=pm_person%3Ahttp%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBarack_Obama&lang=eng&sortBy=rel&page=0&count=25&resultType=timeAggr
http://mustang.ijs.si:8060/json/event?action=getEvents&conceptUri=pm_person%3Ahttp%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBarack_Obama&lang=eng&sortBy=rel&page=0&count=25&resultType=timeAggr
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GetEvents request for event locations: 

 
http://eventregistry.ijs.si/json/event?action=getEvents&conceptUri=pm_person%3Ahttp%3A%2F%2Fen.wi
kipedia.org%2Fwiki%2FBarack_Obama&lang=eng&sortBy=rel&page=0&count=25&resultType=locAggr 
 
Return data: 
{ 
    "results":[{ 
            "count":62, 
            "city":{ 
                "wikiUri":"pm_location:http://en.wikipedia.org/wiki/Benghazi", 
                "labelEng":"Benghazi", 
                "labelSpa":"Bengasi", 
                "labelZho":"Benghazi", 
                "labelDeu":"Banghazi", 
                "labelSlv":"Benghazi", 
                "population":650629, 
                "lat":32.11667, 
                "long":20.06667 
            }, 
            "country":{ 
                "wikiUri":"pm_location:http://en.wikipedia.org/wiki/Libya", 
                "labelEng":"Libya", 
                "labelSpa":"Libya", 
                "labelZho":"Libya", 
                "labelDeu":"Libysch-Arabische Dschamahirija", 
                "labelSlv":"Libijska arabska Jamahiriya", 
                "lat":28, 
                "long":17 
            } 
        }, 
        … 
} 
 
GetEventInfo request: 
http://eventregistry.ijs.si/json/event?action=getEventInfo&eventId=9502 
 
Return data: 
{ 
    "eventInfo":{ 
        "id":9502, 
        "uri":"9502", 
        "primaryStory":{ 
            "uri":"491c258e-688f-41de-8c8e-e3ca71f4a19b-7139", 
            "id":9502, 
            "language":"eng", 
            "extractedDate":"2010-10-19", 
            "extractedDateEnd":"", 
            "averageDate":"2013-05-15", 
            "commonDates":[ 
                    { "Amb":false, "Freq":4, "Date":"-05-09" }, 
                    { "Amb":false, "Freq":2, "Date":"2002-01-" }, 
                    { "Amb":false, "Freq":2, "Date":"2010-12-" } 

http://mustang.ijs.si:8060/json/event?action=getEvents&conceptUri=pm_person%3Ahttp%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBarack_Obama&lang=eng&sortBy=rel&page=0&count=25&resultType=locAggr
http://mustang.ijs.si:8060/json/event?action=getEvents&conceptUri=pm_person%3Ahttp%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBarack_Obama&lang=eng&sortBy=rel&page=0&count=25&resultType=locAggr
http://mustang.ijs.si:8060/json/event?action=getEventInfo&eventId=9502
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            ], 
            "extractedDateFq":4, 
            "articleCount":17 
        }, 
        "stories":[{ 
                "uri":"491c258e-688f-41de-8c8e-e3ca71f4a19b-7139", 
                "id":9502, 
                "language":"eng", 
                "articleCount":17 
            } 
        ], 
        "medoidArticles":[{ 
                "id":"246036", 
                "uri":"http://www.foxnews.com/world/2013/05/17/human-rights-watch-says-it-has-found-
evidence-syrians-were-tortured-in/", 
                "title":"Human Rights Watch report says Syrians were tortured in government prisons", 
                "body":"<p>BEIRUT - Rights activists visiting abandoned government prisons in the first Syrian city 
to come under rebel control have found torture devices and other evidence that detainees were abused 
there, Human Rights Watch said in a report Friday.\u000a Raqqa, in eastern Syria, was overrun in late 
February by rebels fighting to topple President Bashar Assad.  The rebels facilitated the New York-based 
group's access to facilities that had belonged to a government security agency and military intelligence 
in ...</p>", 
                "date":"2013-05-17", 
                "time":"15:34", 
                "lang":"eng", 
                "sim":0.6506, 
                "source_title":"WWW.FOXNEWS.COM", 
                "source_uri":"www.foxnews.com", 
                "source_id":"229", 
                "isDuplicate":false, 
                "story_id":"9502" 
            } 
        ], 
        "articleCounts":{ "total":17, "eng":17, "deu":0, "spa":0, "zho":0, "slv":0 }, 
        "concepts":[{ 
                "uri":"pm_person:http://en.wikipedia.org/wiki/Barack_Obama", 
                "id":"19969", 
                "type":"pm_person", 
                "label":"Barack Obama", 
                "label_eng":"Barack Obama", 
                "label_deu":"Barack Obama", 
                "label_spa":"Barack Obama", 
                "label_zho":"Barack Obama", 
                "label_slv":"Barack Obama", 
                "score":100 
            }, 
            … 
            ] 
} 
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GetEventArticles request: 
http://eventregistry.ijs.si/json/event?action=getEventArticles&eventId=9502&page=0&count=30 
 
Return data: 
{ 
    "articles":[{ 
            "id":"246036", 
            "uri":"http://www.foxnews.com/world/2013/05/17/human-rights-watch-says-it-has-found-
evidence-syrians-were-tortured-in/", 
            "title":"Human Rights Watch report says Syrians were tortured in government prisons", 
            "body":"<p>BEIRUT - Rights activists visiting abandoned government prisons in the first Syrian city to 
come under rebel control have found torture devices and other evidence that detainees were abused there, 
Human Rights Watch said in a report Friday.\u000a Raqqa, in eastern Syria, was overrun in late February by 
rebels fighting to topple President Bashar Assad.  The rebels facilitated the New York-based group's access 
to facilities that had belonged to a government security agency and military intelligence in ...</p>", 
            "date":"2013-05-17", 
            "time":"15:34", 
            "lang":"eng", 
            "sim":0.6506, 
            "source_title":"WWW.FOXNEWS.COM", 
            "source_uri":"www.foxnews.com", 
            "source_id":"229", 
            "isDuplicate":false, 
            "story_id":"9502" 
        }, 
        … 
} 
 

GetTrendingEvents request: 

http://eventregistry.ijs.si/json/event?action=getTrendingEvents&count=10&lang=eng 

Return data: 

{ 
    "trendingEvents":[{ 
            "articles":[{ 
                    "id":"6240", 
                    "uri":"http://www.nydailynews.com/sports/more-sports/mcgaughey-prepares-kentucky-derby-
winner-orb-belmont-article-1.1339904?localLinksEnabled=false", 
                    "title":"McGaughey preps Kentucky Derby winner Orb for Preakness Stakes", 
                    "body":"", 
                    "date":"2013-05-10", 
                    "time":"00:48", 
                    "lang":"eng", 
                    "sim":0.669, 
                    "source_title":"WWW.NYDAILYNEWS.COM", 
                    "source_uri":"www.nydailynews.com", 
                    "source_id":"17", 
                    "isDuplicate":false, 
                    "story_id":"4089" 
                }, 
                ... 
            ], 

http://mustang.ijs.si:8060/json/event?action=getEventArticles&eventId=9502&page=0&count=30
http://mustang.ijs.si:8060/json/event?action=getTrendingEvents&count=10&lang=eng
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            "totalCount":355, 
            "eventDetails":{ 
                "id":4089, 
                "uri":"4089", 
                ... 
            } 
        }, 
        { 
            "articles": ... 
        } 
    ] 
} 


